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Abstract: In this paper, we introduce the concept of a WPH-space without linear structure and
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set-valued mappings and generalized fuzzy qualitative games in WPH-spaces are obtained. As their
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existence theorem of equilibria for qualitative games.
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1. Introduction

Continuous selection theorems play an important role in various nonlinear problems arising in
mathematics and applied science. In 1956, Michael [1] first established a well-known continuous
selection theorem. In 1968, Browder [2] proved a continuous selection theorem in the setting of
paracompact Hausdorff topological vector spaces and used this continuous selection theorem to obtain
his famous fixed point theorem which is an essential tool in proving existence theorems of numerous
nonlinear problems. Since then, Yannelis and Prabhakar [3], Ding et al. [4], Lee et al. [5], Wu and
Shen [6], and Balaj and Lin [7] further studied the continuous selection theorems in Hausdorff
topological vector spaces and gave applications to fixed point theorems, variational inequalities and
various equilibrium problems. It is well known that the theory of fuzzy sets is widely used to deal
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with systems or phenomena which cannot be characterized precisely. Therefore, considering this fact,
Kim et al. [8] and Kim and Lee [9] proved some continuous selection theorems for fuzzy mappings
and gave their applications to fixed point theorems in Hausdorff topological vector spaces.

The linear and convex assumptions are important in the proof of the continuous selection theorems
mentioned above, but at the same time these assumptions limit the application of these continuous
selection theorems. Therefore, in order to further extend the application of continuous selection
theorems, many authors made a lot of efforts to generalize continuous selection theorem to general
spaces without any linear and convex structure. Horvath [10] generalized Michael’s selection
theorems for lower semicontinuous set-valued mappings from topological vector spaces to C-spaces.
Ding and Park [11], Yu and Lin [12], Park [13], and Fakhar and Zafarani [14] studied continuous
selection theorems in G-convex spaces and gave some applications to fixed point theorems and
existence of equilibria. Ding [15] proved new continuous selection theorems in FC-spaces and
applied these selection theorems to collectively fixed point theorems and coincidence theorems for
two families of set-valued mappings defined on product FC-spaces. Recently, Khanh et al. [16]
investigated continuous selection theory in GFC-spaces concluding FC-spaces in [15] as special
cases and obtained a new continuous selection theorem with applications to fixed point theorems,
section theorems, maximal elements, intersection theorems, and existence results of solutions of
variational relations. Very recently, by using a continuous selection theorem which can be seen as a
special case of Theorem 3.1 due to Khanh et al. [16], Khanh and Long [17] obtained a nonempty
intersection theorem, an alternative theorem, and some general minimax inequalities in GFC-spaces.

However, taking into account of the above observations, it is known that almost all existing results
provide sufficient conditions on the existence of selections for set-valued mappings in crisp settings,
and they are also based on strong topological structures, in particular topological vector spaces or
topological spaces with some abstract convex structure. Therefore, it is natural to ask whether it is
possible to construct a more general space framework that can include the spaces mentioned above as
special cases, and to use this space framework to study the existence of selections for fuzzy mappings
and their related problems. From this viewpoint, we give the motivation of this paper, as well as the
methodology and the conclusions as follows.
• Motivations: For any finite subset of a nonempty set, an upper semicontinuous set-valued

mapping from a simplex to a topological space is constructed, on the basis of which we define the
so-called WPH-space consisting of the topological space, nonempty set and set-valued mapping just
mentioned. This space is more general and removes linear and convex structure, which unifies and
covers many spaces in the existing literature. Therefore, it is necessary and meaningful to study the
existence of upper semicontinuous selections for fuzzy mappings and related problems, such as the
existence of fuzzy collective coincidence points, fuzzy collectively fixed points, and the existence of
equilibria for generalized fuzzy games and generalized fuzzy qualitative games in noncompact
WPH-spaces.
• Methodology: By using standard topological analysis, set-valued analysis, and the continuous

partition of unity, we prove the existence of upper semicontinuous selections for fuzzy mappings in
noncompact WPH-spaces when fuzzy mappings satisfy weaker conditions. The properties of
WPH-spaces and the existence results of upper semicontinuous selections for fuzzy mappings are
then used to provide full characterizations on the existence of fuzzy collective coincidence points,
fuzzy collectively fixed points, and equilibria for generalized fuzzy games and generalized fuzzy
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qualitative games in the case where a family of fuzzy mappings, fuzzy constraint mappings, and fuzzy
preference mappings satisfy weaker conditions.
• Conclusions: In the framework of WPH-spaces, we obtain a new existence result of upper

semicontinuous selections for fuzzy mappings under the condition that fuzzy mappings satisfy weaker
open cover property and convexity assumption, and as a corollary of this result, we also get an
existence result of upper semicontinuous selections for set-valued mappings in crisp settings.
Furthermore, based on the existence results of upper semicontinuous selections in fuzzy and crisp
settings, we derive new existence results of fuzzy collective coincidence points, fuzzy collectively
fixed points, and equilibria for generalized fuzzy games and generalized fuzzy qualitative games in
noncompact WPH-spaces. The existence results mentioned above improve, extend and unify the main
results in the existing literature.

The rest of this paper is organized as follows. Section 2 states notation and definitions. In
Section 3, an upper semicontinuous selection theorem for fuzzy mappings is proved in WPH-spaces
and as a direct consequence, an upper semicontinuous selection theorem for set-valued mappings is
obtained. In Section 4, by using upper semicontinuous selection theorems for fuzzy mappings, we
obtain fuzzy collective coincidence point theorems and fuzzy collectively fixed point theorems in
noncompact WPH-spaces. In Section 5, by virtue of the upper semicontinuous selection theorem for
set-valued mappings, we obtain existence theorems of equilibria for generalized fuzzy games and
generalized fuzzy qualitative games, and as consequences, we also derive existence theorems of
equilibria for generalized games, generalized qualitative games, and qualitative games in noncompact
WPH-spaces. As applications, we use the existence result of equilibria for qualitative games to prove
the existence of Pareto equilibria for a multiobjective water resource allocation game model. The
concluding remarks highlight the main findings of the paper and future research trends.

2. Preliminaries

Let X be a nonempty set. We denote by 2X the family of all subsets of X and by ⟨X⟩ the family of
all nonempty finite subsets of X. For any A ∈ ⟨X⟩, we denote by |A| the cardinality of A. Let ∆n denote
the standard n-dimensional simplex with vertices {e0, e1, . . . , en}, where ei is the (i + 1)th unit vector in
Rn+1. For every J ⊆ {0, 1, . . . , n}, let ∆|J|−1 denote the convex hull of {ei : i ∈ J}.

A subset A of a topological space X is said to be compactly open if A
⋂

C is open in C for every
nonempty compact subset C of X. Note that there exists a nonempty subset A of a topological space
X such that for each nonempty compact subset C of X, A

⋂
C is open in C, but A is not open in X

(see, for example, Kelley [18, page 240]). Therefore, the notion of a compactly open set generalizes
the notion of a open set in general topological space. Moreover, let us define the compact closure
and compact interior of A (see [19]) by cclA =

⋂
{D : A ⊂ D and D is compactly closed in X} and

cintA =
⋃
{D : D ⊂ A and D is compactly open in X}, respectively. Obviously, cclA (respectively,

cintA) is compactly closed (respectively, compactly open) in X and A is compactly closed (respectively,
compactly open) if and only if A = cclA (respectively, A = cintA). If C is a nonempty compact subset
of X with A

⋂
C , ∅, then we have cclA

⋂
C = clC(A

⋂
C) and cintA

⋂
C = intC(A

⋂
C).

Let X and Y be two nonempty sets. A function from X into [0, 1] is called a fuzzy set on X. We
denote by F (X) the family of all fuzzy sets on X. A mapping from Y into F (X) is called a fuzzy
mapping. If F : Y → F (X) is a fuzzy mapping, then for each y ∈ Y , F(y) (denoted it by Fy in the
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sequel) is a fuzzy set in F (X) and the number Fy(x) is called the degree of membership of point x in
Fy. If A ∈ F (X) is a fuzzy set, then the set (A)α = {x ∈ X : A(x) > α}, α ∈ [0, 1), is called strong α-cut,
and (A)0 is said to be the support of A. For more details on fuzzy sets, the reader is referred to [8, 9,
20–25] and the references therein.

Definition 2.1. Let X be a topological space and Z be a nonempty set. A triple (X,Z;σN) is said to
be a weakly pseudo H-space (for short, WPH-space) if for each N = {z0, z1, . . . , zn} ∈ ⟨Z⟩, there exists
an upper semicontinuous set-valued mapping σN : ∆n → 2X with nonempty values. A WPH-space
(X,Z;σN) is said to be a Hausdorff WPH-space if X is a Hausdorff topological space. In case X = Z,
the triple (X,Z;σN) can be written by (X;σN).

Remark 2.2. It is worthwhile noting that in Definition 2.1, X and Z do not possess any linear and
convex structure and σN : ∆n → 2X is an upper semicontinuous mapping with nonempty values.
Therefore, WPH-spaces include convex subsets of topological vector spaces, pseudo H-spaces
introduced by Lai et al. [26], Lassonde’s convex spaces in [27], H-spaces introduced by Horvath [28],
G-convex spaces introduced by Park and Kim [29], L-spaces introduced by Ben-El-Mechaiekh
et al. [30], G-H-spaces introduced by Verma [31], FC-spaces due to Ding [15], GFC-spaces due to
Khanh et al. [16], and many other spaces (see, for example, [31–34] and the references therein) as
special cases.

Definition 2.3. Let (X,Z;σN) be a WPH-space, A ⊆ Z, and B ⊆ X. We say that B is WPH-convex
relative to A if for each N = {z0, z1, . . . , zn} ∈ ⟨Z⟩ and each {zi0 , zi1 , . . . , zik} ⊆ A

⋂
{z0, z1, . . . , zn}, we

have σN(∆k) ⊆ B, where ∆k is the convex hull of {ei0 , ei1 , . . . , eik}.

Remark 2.4. (1) By Definition 2.3, we can see that if B is WPH-convex relative to A, then the triple
(B, A;φN) also forms a WPH-space. If A is nonempty and B is WPH-convex relative to A, then B is
automatically nonempty. If X = Z and A = B, then B is said to be a WPH-convex subspace of (X;σN).

(2) Assume that {Ai} be a family of subsets of Z and {Bi} be a family of subsets of X with
⋂

i∈I Bi , ∅,
where I is an index set and Bi is WPH-convex relative to Ai for every i ∈ I. Then by Definition 2.3, we
can show that

⋂
i∈I Bi is also WPH-convex relative to

⋂
i∈I Ai. In fact, for each N = {z0, z1, . . . , zn} ∈ ⟨Z⟩

and each {zi0 , zi1 , . . . , zik} ⊆ (
⋂

i∈I Ai)
⋂
{z0, z1, . . . , zn}, we have {zi0 , zi1 , . . . , zik} ⊆ Ai

⋂
{z0, z1, . . . , zn} for

every i ∈ I. Since Bi is WPH-convex relative to Ai for every i ∈ I, it follows that σN(∆k) ⊆ Bi and thus,
σN(∆k) ⊆

⋂
i∈I Bi.

(3) For any given subset B of X, let us define WPH-hull of B relative to A by

WPH(B, A) =
⋂
{C ⊆ X : B ⊆ C, C is WPH-convex relative to A}.

It is easy to verify that WPH(B, A) is WPH-convex relative to A.

Definition 2.5. Let {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-spaces, whereΩ is a finite or infinite index
set. Let X =

∏
i∈Ω Xi and Y be a topological space. The class B̃(X,Y) of better admissible mappings

is defined as follows: T ∈ B̃(X,Y) ⇔ T : X → 2Y is a set-valued mapping with nonempty values
and for each i ∈ Ω, Ni ∈ ⟨Zi⟩ with |Ni| = ni + 1, each continuous mapping Ψ : T (

∏
i∈Ω σNi(∆ni)) → C,

the composition mapping Ψ ◦ T |∏i∈Ω σNi (∆ni ) ◦ Φ : C → 2C has a fixed point, where C =
∏

i∈Ω ∆ni ,
Φ(z) =

∏
i∈Ω σNi(πi(z)) for every z ∈ C and πi is the projection of C onto ∆ni .

Remark 2.6. Definition 2.5 improves and generalizes the corresponding definition due to Ding [35]

AIMS Mathematics Volume 7, Issue 8, 13994–14028.



13998

in the following aspects: (a) From G-convex spaces to WPH-spaces; (b) The condition that T in the
corresponding definition in Ding [35] is an upper semicontinuous set-valued mapping with compact
values is removed. EvenΩ is a singleton, the class B̃(X,Y) unifies and extends many important classes
of mappings, for example, the class U K

C introduced by Park and Kim [29], the class A defined by
Ben-Ei-Mechaiekh et al. [30], the class B due to Ding [34], and the class of mappings with KKM
property in Chang and Yen [36].

Definition 2.7. Let (X,Z;φN) be a WPH-space and Y be a nonempty set. Let f : Y × X → R ∪ {±∞}
and g : Y × Z → R ∪ {±∞} be two functions. We say that f is WPH-g-quasiconcave on Y if for each
N = {z0, z1, . . . , zn} ∈ ⟨Z⟩, each {zi0 , zi1 , . . . , zik} ⊆ {z0, z1, . . . , zn}, and each y ∈ Y , we have f (y, x) ≥
min
0≤ j≤k

g(y, zi j) for every x ∈ σN(∆k). We say that f is WPH-g-quasiconvex on Y if (− f ) is WPH-(−g)-

quasiconcave on Y . When X = Z and f = g, f is said to be WPH-quasiconcave (respectively, WPH-
quasiconvex) on Y .

Remark 2.8. Definition 2.7 generalizes Definition 4.1 of Zhang and Cheng [37] from FC-spaces to
WPH-spaces. In addition, we can compare Definition 2.7 with Definition 3 of Kim [38] in the following
aspects: (a) The condition that the mapping σN in Definition 2.7 is an upper semicontinuous set-valued
mapping is weaker than the condition that the mapping ϕn in Definition 3 of Kim [38] is a single-valued
continuous mapping; (b) There are two functions in Definition 2.7, but there is only one function in
Definition 3 of Kim [38]; (c) In Definition 2.7, there are three nonempty sets and X does not need to
be a subset of Y . In Definition 3 of Kim [38], there are two nonempty sets and one set is a subset of
another one; (d) x and y in the left of the inequality in Definition 2.7 are independent of each other, but
the corresponding parts in the left of the inequality in Definition 3 of Kim [38] are required to be same.

Definition 2.9. Let (X,Z;φN) be a WPH-space and Y be a nonempty set. Let F : Y → F (X) and
G : Y → F (Z) be two fuzzy mappings. We say that F is WPH-G-quasiconcave (respectively, WPH-
G-quasiconvex) on Y if f is WPH-g-quasiconcave (respectively, WPH-g-quasiconvex) on Y , where
the functions f : Y × X → [0, 1] and g : Y × Z → [0, 1] are defined by f (y, x) = (Fy)(x) for every
(y, x) ∈ Y × X and by g(y, z) = (Gy)(z) for every (y, z) ∈ Y × Z, respectively.

Definition 2.10. Let {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-spaces, where Ω is a finite or infinite
index set. For each i ∈ Ω and each Ñi ∈ ⟨Zi × Zi⟩, let πl(Ñi) (respectively, πr(Ñi)) denote the projection
of Ñi onto the left (respectively, right) of Xi×Xi. Let Y be a topological space. The class D̃B(Πi∈Ω(Xi×

Xi),Y) of better admissible mappings is defined as follows: T ∈ D̃B(Πi∈Ω(Xi×Xi),Y)⇔ T : Πi∈Ω(Xi×

Xi) → 2Y is a set-valued mapping with nonempty values and for each i ∈ Ω, Ñi ∈ ⟨Zi × Zi⟩ with
|Ñi| = ni+1 and each continuous mappingΨ : T (

∏
i∈Ω(σπl(Ñi)(∆ni)×σπr(Ñi)(∆ni)))→ C, the composition

mapping Ψ ◦ T |∏i∈Ω(σ
πl(Ñi)

(∆ni )×σπr (Ñi)
(∆ni )) ◦ Φ : C → 2C has a fixed point, where C =

∏
i∈Ω ∆ni , Φ(z) =∏

i∈Ω(σπl(Ñi)(πi(z)) × σπr(Ñi)(πi(z))) for every z ∈ C and πi is the projection of C onto ∆ni .

3. Upper semicontinuous selections for fuzzy mappings

The following upper semicontinuous selection theorem for fuzzy mappings is useful for proving our
main results. The reader is referred to [39–42] for the concept of an upper semicontinuous set-valued
mapping and its associated properties.
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Theorem 3.1. Let (X,Z;σN) be a WPH-space, K be a nonempty compact subset of a Hausdorff
topological space Y, and α : Y → [0, 1) be a function. Let H : Y → F (X) and P : Y → F (Z)
be two fuzzy mappings such that for each y ∈ K, (Hy)α(y) is WPH-convex relative to (Py)α(y) and
K ⊆

⋃
z∈Z cint{y ∈ Y : Py(z) > α(y)}. Then there exists an upper semicontinuous set-valued mapping

f : K → 2X such that f = σ ◦ β and f (y) = σ(β(y)) ⊆ (Hy)α(y) for every y ∈ K, where σ : ∆n → 2X

is an upper semicontinuous set-valued mapping with nonempty values, β : K → ∆n is a continuous
mapping, and n is a positive integer.

Proof. Let us define a set-valued mapping Υ : K → 2Z by Υ(y) = (Py)α(y) for every y ∈ K. Then we
have Υ−1(z) = {y ∈ K : Py(z) > α(y)} for every z ∈ Z. Since K ⊆

⋃
z∈Z cint{y ∈ Y : Py(z) > α(y)}, it

follows that

K =
⋃
z∈Z

(
K

⋂
cint{y ∈ Y : Py(z) > α(y)}

)
=

⋃
z∈Z

intK{y ∈ K : Py(z) > α(y)}

=
⋃
z∈Z

intKΥ
−1(z).

Since K is compact, there exists {z0, z1, . . . , zn} ∈ ⟨Z⟩ such that K =
⋃n

i=0 intKΥ
−1(zi). Therefore, there

exists a continuous partition of unity {βi}
n
i=0 subordinated to the open cover {intKΥ

−1(zi)}ni=0, that is, for
each i ∈ {0, 1, . . . , n}, βi : K → [0, 1] is continuous such that

∑n
i=0 βi(y) = 1 for every y ∈ K and

βi(y) > 0 implies y ∈ intKΥ
−1(zi). For each y ∈ K, let J(y) := { j ∈ {0, 1, . . . , n} : β j(y) > 0}. Then

for each j ∈ J(y), it follows that y ∈ intKΥ
−1(z j) and so, z j ∈ Υ(y) = (Py)α(y). Now, we define a

single-valued continuous mapping β : K → ∆n by β(y) =
∑n

i=0 βi(y)ei for every y ∈ K and we have
β(y) =

∑
j∈J(y) β j(y)e j ∈ ∆|J(y)|−1 for every y ∈ K. Since (X,Z;φN) is a WPH-space, there exists an

upper semicontinuous set-valued mapping σ : ∆n → 2X associated with the finite set {z0, z1, . . . , zn}.
Thus, the set-valued mapping f : K → 2X defined by f (y) = (σ ◦ β)(y) for every y ∈ K, is upper
semicontinuous on K. Since (Hy)α(y) is WPH-convex relative to (Py)α(y) for every y ∈ K, it follows that
f (y) = (σ ◦ β)(y) = σ(β(y)) ⊆ σ(∆|J(y)|−1) ⊆ (Hy)α(y) for every y ∈ K. This completes the proof. □

Remark 3.2. Theorem 3.1 generalizes Theorem 1 of Kim et al. [8] in the following aspects: (a)
From Hausdorff topological vector spaces to WPH-spaces without any linear and convex structure; (b)
The compactness assumption on X of Theorem 1 of Kim et al. [8] is removed; (c) The continuous
assumptions on α and the function x 7→ Fx(y) of Theorem 1 of Kim et al. [8] are dropped. Theorem 3.1
also extends and generalizes Theorem 2.2 of Tarafdar [42], Corollary 2.1 of Ding [15], and Lemma 4.2
of Khanh and Long [17] to WPH-spaces and fuzzy settings.

Example 3.3. Let X = (0, 1) and Y = (−2, 2) endowed with the Euclidean metric topology. Let Z = R.
Define two fuzzy mappings H : Y → F (X) and P : Y → F (Z) by

Hy(x) =


2
3 , if (y, x) ∈ (−2,−1) × (0, 1) or (y, x) ∈ (1, 2) × (0, 1),
3
4 , if (y, x) ∈ [−1, 1] × [ 1

2 , 1),
0, otherwise.
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Py(z) =



4
5 , if (y, z) ∈ (−2,−1] × (−1

2 , 0] or (y, z) ∈ [1, 2) × (−1
2 , 0],

3
5 , if (y, z) ∈ (−1,−1

2 ) × {0} or (y, z) ∈ (−1,−1
2 ) × (−2y − 1, 1],

2
3 , if (y, z) ∈ [−1

2 ,
1
2 ] × (0, 1],

7
8 , if (y, z) ∈ ( 1

2 , 1) × {0} or (y, z) ∈ ( 1
2 , 1) × (2y − 1, 1],

0 otherwise.

Let α : Y → [0, 1) be defined by α(y) ≡ 1
2 for every y ∈ Y . Then we have the followings:

(Hy)α(y) =

{
(0, 1), if y ∈ (−2,−1) or y ∈ (1, 2),
[1

2 ,1), if y ∈ [−1, 1].

(Py)α(y) =


(−1

2 , 0], if y ∈ (−2,−1] or y ∈ [1, 2),
{0}

⋃
(−2y − 1, 1], if y ∈ (−1,−1

2 ),
(0, 1], if y ∈ [−1

2 ,
1
2 ],

{0}
⋃

(2y − 1, 1], if y ∈ (1
2 , 1).

Now, we show that all the conditions of Theorem 3.1 are satisfied.
(1) For each N = {z0, z1, . . . , zn} ∈ ⟨Z⟩, define a continuous mapping ρN : ∆n → X as follows:

ρN(p) =
1

1 +
∑n

i=1 λ
2
i

1+max0≤ j≤n{|z j |}

, ∀ p =
n∑

i=0

λiei ∈ ∆n.

Define a set-valued mapping L : X → 2X by L(x) = [x, 1) for every x ∈ X, which is upper
semicontinuous on X. Indeed, let x ∈ X and for each open subset V of X with L(x) = [x, 1) ⊆ V . Then
there exists ε > 0 such that x − ε > 0 and (x − ε, 1) ⊆ V . Taking U(x) = (x − ε, 1), we can see that
U(x) is an open neighborhood of x and L(x

′

) = [x
′

, 1) ⊆ (x − ε, 1) ⊆ V for every x
′

∈ U(x). Thus, by
the definition of an upper semicontinuous set-valued mapping (see Definition 7.1.1 of Klein and
Thompson [39]), L is upper semicontinuous on X. Therefore, for each N ∈ ⟨Z⟩ with |N | = n + 1, the
set-valued mapping σN : ∆n → 2X defined by σN(p) = L ◦ ρN(p) for every p ∈ ∆n, is upper
semicontinuous on ∆n, which implies that (X,Z;σN) forms a WPH-space. Then for each y ∈ Y , each
N = {z0, z1, . . . , zn} ∈ ⟨Z⟩, and each {zi0 , zi1 , . . . , zik} ⊆ N

⋂
(Py)α(y), it is easy to check that

σN(∆k) ⊆ (Hy)α(y).
(2) Let K = [−1

2 ,
3
2 ] be a compact subset of Y . Since there exist z0 = 0 ∈ Z, z1 = 1 ∈ Z such that

cint{y ∈ Y : Py(0) > α(y)} = (−2,−1
2 )

⋃
( 1

2 , 2) and cint{y ∈ Y : Py(1) > α(y)} = (−1, 1), it follows that

K ⊆

(
(−2,−

1
2

)
⋃

(
1
2
, 2)

)⋃
(−1, 1)

= cint{y ∈ Y : Py(0) > α(y)}
⋃

cint{y ∈ Y : Py(1) > α(y)}

⊆
⋃
z∈Z

cint{y ∈ Y : Py(z) > α(y)}.

Hence, all the conditions of Theorem 3.1 are fulfilled. We can find a specific upper semicontinuous
set-valued mapping f : K → 2X such that f = σ ◦ β and f (y) = σ(β(y)) ⊆ (Hy)α(y) for every
y ∈ K, where σ : ∆1 → 2X is an upper semicontinuous set-valued mapping with nonempty values and
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β : K → ∆1 is a continuous mapping. In fact, let us define a continuous mapping β : K → ∆1 ⊆ R
2 by

β(y) = ( |y|6 , 1 −
|y|
6 ) for every y ∈ K and an upper semicontinuous set-valued mapping σ : ∆1 → 2X by

σ(p) = [
2

2 + λ2
1 + λ

2
2

, 1), ∀ p = (λ1, λ2) ∈ ∆1.

Then we can see that the upper semicontinuous set-valued mapping f = σ ◦ β defined on K satisfies
the above requirement.

The following upper semicontinuous selection theorem for set-valued mappings is a direct
consequence of Theorem 3.1 in crisp settings.

Theorem 3.4. Let (X,Z;σN) be a WPH-space and K be a nonempty compact subset of a Hausdorff
topological space Y. Let H : Y → 2X and P : Y → 2Z be two set-valued mappings such that for
each y ∈ K, H(y) is WPH-convex relative to P(y) and K ⊆

⋃
z∈Z cintP−1(z). Then there exists an upper

semicontinuous set-valued mapping f : K → 2X such that f = σ ◦ β and f (y) = σ(β(y)) ⊆ H(y)
for every y ∈ K, where σ : ∆n → 2X is an upper semicontinuous set-valued mapping with nonempty
values, β : K → ∆n is a continuous mapping, and n is a positive integer.

Proof. By using H and P, we can define two fuzzy mappings H̃ : Y → F (X) and P̃ : Y → F (Z) by
H̃y = χH(y) and by P̃y = χP(y) for every y ∈ Y , respectively, where χE is the characteristic function of
the subset E ⊆ X or E ⊆ Z. Define α : Y → [0, 1) by α(y) ≡ 0 for every y ∈ Y . Then it is easy to see
that (H̃y)α(y) = H(y), (P̃y)α(y) = P(y) for every y ∈ Y , and P−1(z) = {y ∈ Y : P̃y(z) > α(y)}. Thus, all the
hypotheses of Theorem 3.1 are satisfied. Therefore, there exists an upper semicontinuous set-valued
mapping f : K → 2X such that f = σ ◦ β and f (y) = σ(β(y)) ⊆ (H̃y)α(y) = H(y) for every y ∈ K, where
σ : ∆n → 2X is an upper semicontinuous set-valued mapping with nonempty values, β : K → ∆n is a
continuous mapping, and n is a positive integer. This completes the proof. □

4. Fuzzy coincidence and fixed points

In this section, as applications of the upper semicontinuous selection theorems, we will establish
fuzzy coincidence point theorems and fuzzy collectively fixed point theorems in noncompact WPH-
spaces without any linear and convex structure.

Let Ω be a finite or infinite index set. For each i ∈ Ω, let Xi be a nonempty set, Hi : Y → F (Xi) be
a fuzzy mapping, and αi : Y → [0, 1) be a function. Let X =

∏
i∈Ω Xi and T : X → 2Y be a set-valued

mapping, where Y is a topological space. We consider the fuzzy collective coincidence point problem
(in short, FCCPP) as follows: finding x̂ ∈ X and ŷ ∈ Y such that ŷ ∈ T (x̂) and x̂i ∈ (Hîy)αi (̂y) for every i ∈
Ω. Let Hi : Y → 2Xi be a set-valued mapping for every i ∈ Ω.

If X = Y and T is the identity mapping on X, then the above problem deduces the fuzzy collectively
fixed point problem (in short, FCFPP) as follows: Finding x̂ ∈ X such that x̂i ∈ (Hix̂)αi(x̂) for all i ∈ Ω,
which was studied by Kim and Lee [9] in locally convex Hausdorff topological vector spaces.

Theorem 4.1. Let Ω be a finite or infinite index set and {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-
spaces. Let X =

∏
i∈Υ Xi and T ∈ B̃(X,Y), where Y is a Hausdorff topological space. For each i ∈ Ω,

let αi : Y → [0, 1) be a function and let Hi : Y → F (Xi) and Pi : Y → F (Zi) be two fuzzy mappings
such that the following conditions hold:
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(i) T (X) is a compact subset of Y;
(ii) For each y ∈ T (X), (Hiy)αi(y) is WPH-convex relative to (Piy)αi(y);
(iii) T (X) ⊆

⋃
zi∈Zi

cint{y ∈ Y : Piy(zi) > αi(y)}.

Then FCCPP has a solution.

Proof. By Theorem 3.1, for each i ∈ Ω, there exists an upper semicontinuous set-valued mapping
fi : T (X) → 2Xi such that fi = σi ◦ βi and fi(y) = σi(βi(y)) ⊆ (Hiy)αi(y) for every y ∈ Y , where
σi : ∆ni → 2Xi is an upper semicontinuous set-valued mapping with nonempty values, βi : T (X)→ ∆ni

is a continuous mapping, and ni is a positive integer. Let C =
∏

i∈Ω ∆ni and πi : C → ∆ni be the
projection of C onto ∆ni . Let us define a set-valued mapping Φ : C → 2X and a continuous mapping
Ψ : T (X) → C by Φ(z) =

∏
i∈Ω σi(πi(z)) for every z ∈ C and Ψ(y) =

∏
i∈Ω βi(y) for every y ∈ T (X),

respectively. We observe that σi(∆ni) ⊆ Xi for every i ∈ Ω. Hence,
∏

i∈Ω σi(∆ni) ⊆
∏

i∈Ω Xi = X and
T (

∏
i∈Ω σi(∆ni)) ⊆ T (X). Since T ∈ B̃(X,Y), it follows that the composition Ψ ◦ T |∏i∈Ω σi(∆ni ) ◦Φ : C →

2C has a fixed point, which implies that there exists ẑ ∈ C such that

ẑ ∈ Ψ ◦ T |∏i∈Ω σi(∆ni ) ◦ Φ(̂z).

Then there exists x̂ ∈ Φ(̂z) such that ẑ ∈ Ψ ◦ T |∏i∈Ω σi(∆ni )(x̂). Let ŷ ∈ T (x̂) such that

x̂ ∈ Φ(̂z) = Φ ◦ Ψ(̂y) = Φ
(∏

i∈Ω

βi(̂y)
)
=

∏
i∈Ω

σi

(
πi

(∏
i∈Ω

βi(̂y)
))
=

∏
i∈Ω

(σi ◦ βi)(̂y).

It follows that x̂i ∈ (σi◦βi)(̂y) ⊆ (Hîy)αi (̂y) for every i ∈ Ω. Hence, FCCPP has a solution. This completes
the proof. □

Example 4.2. Let Ω be a singleton and X = Y = ( 1
2 , 1] with the Euclidean metric topology. Let

Z = ( 1
2 , 1]. Define two fuzzy mappings H : Y → F (X) and P : Y → F (Z) by

Hy(x) = (
1
3

y +
1
4

)x, ∀ x, y ∈ (
1
2
, 1],

Py(z) = (
2
9

y +
1
6

)z, ∀ y, z ∈ (
1
2
, 1],

respectively. Let α : Y → [0, 1) be defined by α(y) = 1
6y + 1

8 for every y ∈ ( 1
2 , 1]. Then we have

(Hy)α(y) = ( 1
2 , 1] and (Py)α(y) = (3

4 , 1] for every y ∈ ( 1
2 , 1]. Define a set-valued mapping T : X → 2Y by

T (x) =
{

[2
3 ,

4
5 ], if x ∈ [ 9

10 , 1],
[11

15 ,
4
5 ], if x ∈ ( 1

2 ,
9

10 ).

Now, we check all the conditions of Theorem 4.1 as follows:
(1) For each N = {z0, z1, . . . , zn} ∈ ⟨Z⟩, define a continuous function νN : ∆n → X by νN(p) =∑n

i=0 λizi for every p =
∑n

i=0 λiei. Furthermore, let L : X → 2X be defined by

L(x) =
{

( 1
2 ,

3
4 ], if x ∈ [3

4 , 1],
[ 3

5 ,
7

10 ], if x ∈ (1
2 ,

3
4 ).

We can prove that L is upper semicontinuous on X. Indeed, let x ∈ X and for any open subset V of
X with L(x) ⊆ V . Let x = 3

4 . Then we have L( 3
4 ) = ( 1

2 ,
3
4 ] ⊆ V and thus, there exists ε > 0 such that
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3
4 + ε < 1 and (1

2 ,
3
4 + ε) ⊆ V . Let U( 3

4 ) = ( 1
2 ,

3
4 + ε) be an open neighborhood of 3

4 in X. If x
′

∈ ( 1
2 ,

3
4 ),

then we have L(x
′

) = [ 3
5 ,

7
10 ] ⊆ ( 1

2 ,
3
4 ] ⊆ V . If x

′

∈ [3
4 ,

3
4 +ε), then we have L(x

′

) = ( 1
2 ,

3
4 ] ⊆ V . Therefore,

we have L(x
′

) ⊆ V for every x
′

∈ U(3
4 ), which implies that L is upper semicontinuous at 3

4 . Now, let
x = 1. Then we have L(1) = (1

2 ,
3
4 ] ⊆ V . Taking U(1) = (1

2 , 1] as an open neighborhood of 1 in X, we
know that L(x

′

) = ( 1
2 ,

3
4 ] ⊆ V for each x

′

∈ [ 3
4 , 1] and L(x

′

) = [3
5 ,

7
10 ] ⊆ (1

2 ,
3
4 ] ⊆ V for each x

′

∈ ( 1
2 ,

3
4 ).

Therefore, we have L(x
′

) ⊆ V for every x
′

∈ U(1), which implies that L is upper semicontinuous at
1. By using the argument similar to that used above, we can prove that L is upper semicontinuous at
every x ∈ (3

4 , 1)
⋃

( 1
2 ,

3
4 ). Thus, L is upper semicontinuous on X. For each N = {z0, z1 . . . , zn} ∈ ⟨Z⟩,

define σN = L ◦ νN : ∆n → 2X. Then σN is upper semicontinuous on ∆n and thus, (X;σN) forms a
WPH-space. It is easy to see that T (X) = [ 2

3 ,
4
5 ], which is a nonempty compact subset of Y . Therefore,

condition (i) of Theorem 4.1 is fulfilled. For each y ∈ T (X) = [2
3 ,

4
5 ], each N = {z0, z1 . . . , zn} ∈ ⟨Z⟩,

and each {zi0 , zi1 . . . , zik} ⊆ N ∩ (Py)α(y), we have σN(∆k) ⊆ (Hy)α(y), which implies that condition (ii) of
Theorem 4.1 is satisfied.

(2) Since α and the function y 7→ (Py)(z) for each z ∈ Z are continuous on Y , it follows that the
set {y ∈ Y : Py(z) > α(y)} is an open subset of Y for every z ∈ Z. Therefore, for each z ∈ Z, we have
{y ∈ Y : Py(z) > α(y)} = cint{y ∈ Y : Py(z) > α(y)}. For each y ∈ Y , there exists {1} ⊆ Z such that
1 ∈ (Py)α(y) = ( 3

4 , 1] and hence, we get T (X) = [2
3 ,

4
5 ] ⊆ Y = cint{y ∈ Y : Py(1) > α(y)}, which implies

that condition (iii) of Theorem 4.1 is satisfied.
(3) We show that T ∈ B̃(X,Y). We can prove that T is upper semicontinuous on X. Indeed, let

x ∈ X and for any open subset V of Y with T (x) ⊆ V . Let x = 9
10 . Then we have T ( 9

10 ) = [2
3 ,

4
5 ] ⊆ V .

Let U( 9
10 ) = ( 4

5 , 1) be an open neighborhood of 9
10 in X. If x

′

∈ (4
5 ,

9
10 ), then we have T (x

′

) = [11
15 ,

4
5 ] ⊆

[ 2
3 ,

4
5 ] ⊆ V . If x

′

∈ [ 9
10 , 1), then we have T (x

′

) = [2
3 ,

4
5 ] ⊆ V . Therefore, we have T (x

′

) ⊆ V for every x
′

∈

U( 9
10 ). Now, let x = 1. Then we have T (1) = [ 2

3 ,
4
5 ] ⊆ V . Let U(1) = ( 1

2 , 1] be an open neighborhood
of 1 in X and thus, we can see that if x

′

∈ [ 9
10 , 1], then we have T (x

′

) = [ 2
3 ,

4
5 ] ⊆ V and if x

′

∈ ( 1
2 ,

9
10 ),

then we have T (x
′

) = [ 11
15 ,

4
5 ] ⊆ [ 2

3 ,
4
5 ] ⊆ V . Therefore, we have T (x

′

) ⊆ V for every x
′

∈ U(1). By
using the argument similar to that used above, we can prove that T is upper semicontinuous at every
x ∈ ( 9

10 , 1)
⋃

(1
2 ,

9
10 ). Thus, T is upper semicontinuous on X. For each N = {z0, z1, . . . , zn} ∈ ⟨D⟩ and each

p ∈ ∆n, we can see that T (σN)(p) = [ 11
15 ,

4
5 ]. In fact, for each p ∈ ∆n and each N = {z0, z1 . . . , zn} ∈ ⟨Z⟩,

by the definition of the function ν, we have 1
2 < νN(p) =

∑n
i=0 λidi ≤ 1. If 3

4 ≤ νN(p) ≤ 1
2 , then

σN(p) = L ◦ νN(p) = (1
2 ,

3
4 ] ⊆ (1

2 ,
9
10 ). If 1

2 < νN(p) < 3
4 , then σN(p) = L ◦ νN(p) = [ 3

5 ,
7

10 ] ⊆
( 1

2 ,
9

10 ). By the definition of T , we have T (σN)(p) = T (σN(∆n)) = [11
15 ,

4
5 ]. Therefore, the composition

T |σN ◦ σN : ∆n → 2T (σN (∆n)) is an upper semicontinuous set-valued mapping with nonempty compact
convex values. By Lemma 1 in Yuan [40], for each continuous function ψ : T (σN(∆n)) → ∆n, the
composition ψ ◦ T |σN ◦ σN : ∆n → 2∆n has a fixed point, which implies that T ∈ B̃(X,Y). Let x∗ = 9

10
and y∗ = 7

10 . Then we can see that y∗ ∈ T (x∗) and x∗ ∈ (Hy∗)α(y∗).

Corollary 4.3. Let Ω be a finite or infinite index set and {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-
spaces. Let X =

∏
i∈Υ Xi and T ∈ B̃(X,Y), where T is upper semicontinuous set-values mapping with

compact values and Y is a Hausdorff topological space. For each i ∈ Ω, let αi : Y → [0, 1) be a
function and let Hi : Y → F (Xi) and Pi : Y → F (Zi) be two fuzzy mappings such that the following
conditions hold:

(i) For each y ∈ T (X), (Hiy)αi(y) is WPH-convex relative to (Piy)αi(y);
(ii) T (X) ⊆

⋃
zi∈Zi

cint{y ∈ Y : Piy(zi) > αi(y)}.
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Then FCCPP has a solution.

Proof. It suffices to prove that T (X) is a compact subset of Y . Indeed, by Proposition 3.1.11 of Aubin
and Ekeland [43], T (X) is compact subset of Y . Therefore, all the requirements of Theorem 4.1 are
satisfied. So, by Theorem 4.1, FCCPP has a solution. This completes the proof. □

Theorem 4.4. Let Y be a Hausdorff topological space and {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-
spaces, where Ω is a finite or infinite index set. Let X =

∏
i∈Ω Xi and T ∈ B̃(X,Y). For each i ∈ Ω, let

αi : Y → [0, 1) be a function and let Hi : Y → F (Xi) and Pi : Y → F (Zi) be two fuzzy mappings such
that the following conditions hold:

(i) For each y ∈ T (X), (Hiy)αi(y) is WPH-convex relative to (Piy)αi(y);
(ii) There exists a nonempty subset Z0

i of Zi such that
⋃

zi∈Zi
cint{y ∈ Y : Piy(zi) > αi(y)} contains⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c which is a nonempty compact subset of Y or an empty set, and for

each Qi ∈ ⟨Zi⟩, there exists a nonempty subset LQi of Xi, which is WPH-convex relative to some Z
′

i ⊆ Zi

such that Z0
i
⋃

Qi ⊆ Z
′

i and T (LQ) is compact, where LQ =
∏

i∈Ω LQi .

Then FCCPP has a solution.

Proof. For each i ∈ Ω, set Ki :=
⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c. Then it follows from (ii) that

Ki ⊆
⋃

zi∈Zi
cint{y ∈ Y : Piy(zi) > αi(y)}. If Ki is nonempty compact for every i ∈ Ω, then there exists

Qi ∈ ⟨Zi⟩ such that
Ki ⊆

⋃
zi∈Qi

cint{y ∈ Y : Piy(zi) > αi(y)}. (4.1)

Thus, by (4.1), we have

Y = (Y \ Ki)
⋃

Ki

=

( ⋃
zi∈Z0

i

cint{y ∈ Y : Piy(zi) > αi(y)}
)⋃( ⋃

zi∈Qi

cint{y ∈ Y : Piy(zi) > αi(y)}
)

=
⋃

zi∈Z0
i ∪Qi

cint{y ∈ Y : Piy(zi) > αi(y)}.

If Ki = ∅, then for every Qi ∈ ⟨Zi⟩, we have

Y =
⋃
zi∈Z0

i

cint{y ∈ Y : Piy(zi) > αi(y)} =
⋃

zi∈Z0
i ∪Qi

cint{y ∈ Y : Piy(zi) > αi(y)}. (4.2)

Therefore, (4.2) holds for each i ∈ Ω and the finite set Qi in (4.1). By (ii) again, for each i ∈ Ω and the
finite set Qi in (4.1), there exists a nonempty subset LQi ⊆ Xi which is WPH-convex relative to some
Z
′

i ⊆ Zi such that Z0
i
⋃

Qi ⊆ Z
′

i . Hence, by (4.2), we have

T (LQ) ⊆ Y =
⋃
zi∈Z

′

i

cint{y ∈ Y : Piy(zi) > αi(y)}. (4.3)

As remarked before, we can see that {(LQi ,Z
′

i ;σNi)|i ∈ Ω} is a family of WPH-spaces. For each
i ∈ Ω, define two fuzzy mappings H′i : Y → F (LQi) and P′i : Y → F (Z′i ) by

H′iy = Hiy |LQi
and P′iy = Piy |Z′i , ∀ y ∈ Y.
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Since T ∈ B̃(X,Y), it follows that T |LQ ∈ B̃(LQ,Y). By (4.3), we have

T (LQ) ⊆
⋃
zi∈Z′i

cint{y ∈ Y : P′iy(zi) > αi(y)}, ∀ i ∈ Ω. (4.4)

Then by (4.4) and the assumption that T (LQ) is compact, we know that (i) and (iii) of Theorem 4.1
are fulfilled, respectively. We now prove that (ii) of Theorem 4.1 for H′i and P′i holds. In fact, by (i),
for each y ∈ T (LQ), each i ∈ Ω, each Ni = {zi0 , zi1 , . . . , zini

} ∈ ⟨Z′i ⟩, and each {zi j0
, zi j1

, . . . , zi jki
} ⊆

Ni
⋂

(P′iy)αi(y) = Ni
⋂
{zi ∈ Z′i : P′iy(zi) > αi(y)} = Ni

⋂
(Piy)αi(y)

⋂
Z′i , we have

σNi(∆ki) ⊆ (Hiy)αi(y)

⋂
LQi = (H′iy)αi(y),

which implies that (ii) of Theorem 4.1 is satisfied. Therefore, it follows from Theorem 4.1 that FCCPP
for T |LQ and {H

′

i }i∈Ω has a solution, which is also a solution to FCCPP for T and {Hi}i∈Ω. This completes
the proof. □

Remark 4.5. (1) Theorem 3.3 of Lu and Hu [44] and Theorem 4.4 cannot be deduced from each other
for the following reasons: (a) Although the FWC-spaces involved in Theorem 3.3 of Lu and Hu [44]
are more general than the WPH-spaces involved in Theorem 4.4, (ii) of Theorem 3.3 due to Lu and
Hu [44] is not required in Theorem 4.4; (b) The condition that

⋂
zi∈Z0

i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c

is a nonempty compact subset of Y or an empty set in Theorem 4.4 is weaker than the condition
that

⋂
di∈D0

i
[int{y ∈ Y : Giy(di) > αi(y)}]c is a nonempty compact subset of T (X) or an empty set in

Theorem 3.3 of Lu and Hu [44]; (c) It is obvious that in Theorem 3.3 due to Lu and Hu [44], (ii) and
the condition that

⋂
di∈D0

i
[int{y ∈ Y : Giy(di) > αi(y)}]c is a nonempty compact subset of T (X) or an

empty set implies that the condition that
⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c is a nonempty compact

subset of Y or an empty set and
⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c ⊆

⋃
zi∈Zi

cint{y ∈ Y : Piy(zi) > αi(y)}
holds in Theorem 4.4.

(2) Theorem 4.4 generalizes Theorem 3.2 of Khanh et al. [45] in the following aspects: (a) From
WPH-spaces to GFC-spaces; (b) From FCCPP to CFP; (c) (ii′) Of Theorem 3.2 of Khanh et al. [45]
is dropped. Therefore, by Remark 3.2 of Khanh et al. [45], Theorem 3.4 extends and generalizes
Theorem 3.4 of Ding [15], Theorem 3 of Park [13], and Theorem 1 of Ansari and Yao [46].

Example 4.6. Let Ω be a singleton, X = Y = (0, 1] with the Euclidean metric topology, and let
Z = [ 1

3 , 1]. Define two fuzzy mappings H : Y → F (X) and P : Y → F (Z) by

Hy(x) =
{

( y
2 +

1
8 )x, if y ∈ (0, 1

2 ], x ∈ (0, 1],
( 1

3y2 + 1
8 )x, if y ∈ (1

2 , 1], x ∈ (0, 1],

Py(z) =
{

(1
4y + 1

16 )z, if y ∈ (0, 1
2 ], z ∈ [ 1

3 , 1],
(1

6y2 + 7
48 )z, if y ∈ ( 1

2 , 1], z ∈ [ 1
3 , 1].

The function α : Y → [0, 1) is defined by

α(y) =
{ 1

9y + 1
36 , if y ∈ (0, 1

2 ],
2

27y2 + 7
108 , if y ∈ (1

2 , 1].
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Then we have

(Hy)α(y) =

 ( 2
9 , 1] if y ∈ (0, 1

2 ],
( 16y2+14

72y2+27 , 1] if y ∈ (1
2 , 1],

and (Py)α(y) = ( 4
9 , 1] for each y ∈ Y . Define a set-valued mapping T : X → 2Y by

T (x) =
{

[ 7
10 ,

4
5 ], if x = 1,

(3
4 ,

4
5 ], if x ∈ (0, 1).

Now, we show that all the conditions of Theorem 4.4 are fulfilled.
(1) For each each N = {z0, z1, . . . , zn} ∈ ⟨Z⟩, let us define a set-valued mapping σN : ∆n → 2X by

σN(p) = [
∑n

j=0 λ jz j, 1] for every p =
∑n

j=0 λ je j ∈ ∆n. Then by using the same method as in Example
3.2, we can verify that (X,Z;σN) forms a WPH-space. For each y ∈ T (X) = [ 7

10 ,
4
5 ] ⊆ (1

2 , 1], each
N = {z0, z1, . . . , zn} ∈ ⟨Z⟩, each {zi0 , zi1 , . . . , zik} ⊆ N

⋂
(Py)α(y), and each p =

∑k
j=0 λi jei j ∈ ∆k, we have

4
9
<

k∑
j=0

λi jzi j ≤ 1.

Therefore, combining the fact that 4
9 >

16y2+14
72y2+27 if y > 1

2 , we get the following:

σN(p) = [
k∑

j=0

λi jzi j , 1] ⊆ (
4
9
, 1] ⊆ (

16y2 + 14
72y2 + 27

, 1] = (Hy)α(y),

which implies σN(∆k) ⊆ (Hy)α(y). Therefore, (i) of Theorem 4.4 is satisfied. Since α is upper
semicontinuous on Y and for each z ∈ Z, the function y 7→ Py(z) is lower semicontinuous on Y , it
follows that the set {y ∈ Y : Py(z) > α(y)} is open in Y for every z ∈ Z and thus, we have
{y ∈ Y : Py(z) > α(y)} = cint{y ∈ Y : Py(z) > α(y)}.

(2) Let Z0 = {1} ⊆ Z. Since
⋃

z∈Z0 cint{y ∈ Y : Py(z) > α(y)} = Y ,
⋂

z∈Z0[cint{Py(z) > α(y)}]c

is empty. For each Q = {m0,m1, . . . ,mn} ∈ ⟨Z⟩, let m = min
0≤ j≤n
{m j}, LQ = co({1}

⋃
Q), and Z′ = LQ.

Then we have LQ = [m, 1] and Z0 ⋃
Q = {1}

⋃
Q ⊆ Z

′

. Now, we verify that LQ is WPH-convex
relative to Z′. In fact, for each N′ = {z′0, z

′
1, . . . , z

′
n} ∈ ⟨Z⟩ and each {z′i0 , z

′
i1 . . . , z

′
ik
} ⊆ N′

⋂
Z′, we have

m ≤
∑k

j=0 λi jz
′
i j
≤ 1 for every p =

∑k
j=0 λi jei j ∈ ∆k. Hence, σN′(p) = [

∑k
j=0 λi jz

′
i j
, 1] ⊆ [m, 1] = LQ,

which implies that LQ is is WPH-convex relative to Z′. By the definition of T , we have T (LQ) = [ 7
10 ,

4
5 ],

which is compact.
(3) For each N ∈ ⟨Z⟩ with |N | = n + 1, by the definitions of T and σN , we can see that T (z) =

T (σN(∆n)) = [ 7
10 ,

4
5 ] for every z ∈ ∆n. Therefore, the composition T |σN ◦σN : ∆n → 2T (σN (∆n)) is an upper

semicontinuous set-valued mapping with nonempty compact convex values. By Lemma 1 in Yuan [40],
for each single-valued continuous function ψ : T (σN(∆n))→ ∆n, the composition ψ◦T |σN ◦σN : ∆n →

2∆n has a fixed point, which implies that T ∈ B̃(X,Y). In summary, all the hypotheses of Theorem 4.4
are fulfilled and hence, the FCCPP in Example 4.6 has a solution. Let x∗ = 3

5 and y∗ = 4
5 . Then we can

check that y∗ ∈ T (x∗) and x∗ ∈ (Hy∗)α(y∗).

Corollary 4.7. Let Y be a Hausdorff topological space and {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-
spaces, where Ω is a finite or infinite index set. Let X =

∏
i∈Ω Xi and T ∈ B̃(X,Y), where T is upper
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semicontinuous set-values mapping with compact values. For each i ∈ Ω, let Gi : Zi → 2Xi be a set-
valued mapping, αi : Y → [0, 1) be a function, Hi : Y → F (Xi) and Pi : Y → F (Zi) be two fuzzy
mappings such that the following conditions hold:

(i) For each y ∈ T (X), WPH(Gi((Piy)αi(y)), (Piy)αi(y)) ⊆ (Hiy)αi(y);
(ii) There exists a nonempty subset Z0

i of Zi such that
⋃

zi∈Zi
cint{y ∈ Y : Piy(zi) > αi(y)} contains⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c which is a nonempty compact subset of Y or an empty set, and

for each Qi ∈ ⟨Zi⟩, there exists a nonempty compact subset LQi of Xi, which is WPH-convex relative to
some Z

′

i ⊆ Zi such that Z0
i
⋃

Qi ⊆ Z
′

i .

Then FCCPP has a solution.

Proof. By the definition of a WPH-hull, we can see that WPH(Gi((Piy)αi(y)), (Piy)αi(y)) is WPH-convex
relative to (Piy)αi(y) for every i ∈ Ω and every y ∈ T (X). Then it follows from (i) that (Hiy)αi(y) is
WPH-convex relative to (Piy)αi(y) for every i ∈ Ω and every y ∈ T (X). By (ii), for each i ∈ Ω and
each Qi ∈ ⟨Zi⟩, there exists a nonempty compact subset LQi of Xi. By this fact, we can see that the
set LQ =

∏
i∈Ω LQi is compact. Since T is upper semicontinuous set-values mapping with compact

values, it follows from Proposition 3.1.11 of Aubin and Ekeland [43] that T (LQ) is compact subset of
Y . Thus, all the conditions of Theorem 4.4 are fulfilled. Therefore, by Theorem 4.4, the conclusion of
Corollary 4.7 holds. The proof is complete. □

Remark 4.8. (ii) of Corollary 4.7 can be replaced by the following conditions:
(ii)′ There exist a compact subset K of Y and a nonempty subset Z0

i of Zi such that
Y \ K ⊆

⋃
zi∈Z0

i
cint{y ∈ Y : Piy(zi) > αi(y)}, and for each Qi ∈ ⟨Zi⟩, there exists a nonempty compact

subset LQi of Xi, which is WPH-convex relative to some Z
′

i ⊆ Zi such that Z0
i
⋃

Qi ⊆ Z
′

i ;
(ii)′′ For each compact subset K of Y , K ⊆

⋃
zi∈Zi

cint{y ∈ Y : Piy(zi) > αi(y)}.
In fact, by (ii)′, we get⋂

zi∈Z0
i

[cint{y ∈ Y : Piy(zi) > αi(y)}]c = Y \
⋃
zi∈Z0

i

cint{y ∈ Y : Piy(zi) > αi(y)} ⊆ K.

If
⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c , ∅, then it is compact by the fact that it is a compactly

closed subset of the compact set K. Therefore, it follows from (ii)′′ that
⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) >

αi(y)}]c ⊆
⋃

zi∈Zi
cint{y ∈ Y : Piy(zi) > αi(y)}, which implies that condition (ii) of Corollary 4.7 holds. If⋂

zi∈Z0
i
[cint{y ∈ Y : Piy(zi) > αi(y)}]c = ∅, then (ii) of Corollary 4.7 holds automatically.

Theorem 4.9. Let Y be a Hausdorff topological space and {Xi|i ∈ Ω} be a family of topological
vector spaces, where Ω is a finite or infinite index set. Let X =

∏
i∈Ω Xi and T : X → 2Y be an upper

semicontinuous set-valued mapping with nonempty compact values. For each i ∈ Ω, let αi : Y → [0, 1)
be a function and let Hi : Y → F (Xi) and Pi : Y → F (Xi) be two fuzzy mappings such that the
following conditions are fulfilled:

(i) For each Ni = {xi0 , xi1 , . . . , xini
} ∈ ⟨Xi⟩ and for each single-valued continuous mapping Ψ :

T (
∏

i∈Ω τNi(∆ni)) → C, the composition mapping Ψ ◦ T∏
i∈Ω τNi (∆ni ) ◦

∏
i∈Ω τNi : C → 2C has a fixed

point, where C =
∏

i∈Ω ∆ni , τNi : ∆ni → Xi is a linear function such that τNi(ei j) = xi j for every
j ∈ {0, 1, . . . , ni},

∏
i∈Ω τNi : C → X is defined by

∏
i∈Ω τNi(z) =

∏
i∈Ω τNi(πi(z)) for every z ∈ C, and πi

is the projection of C onto ∆ni .;
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(ii) For each y ∈ T (X), co((Piy)αi(y)) ⊆ (Hiy)αi(y);
(iii) There exists a nonempty subset X0

i which is contained in a compact convex subset X̃i of Xi such
that

⋂
xi∈X0

i
[cint{y ∈ Y : Piy(xi) > αi(y)}]c ⊆

⋃
xi∈Xi

cint{y ∈ Y : Piy(xi) > αi(y)}, where
⋂

xi∈X0
i
[cint{y ∈

Y : Piy(xi) > αi(y)}]c is a nonempty compact subset of Y or an empty set.

Then FCCPP has a solution.

Proof. For each i ∈ Ω and each Ni = {xi0 , xi1 , . . . , xini
} ∈ ⟨Xi⟩, we define a continuous mapping

σNi : ∆ni → co(Ni) ⊆ Xi as follows:

σNi(
ni∑
j=0

ti jei j) =
ni∑
j=0

ti j xi j , ∀(ti0 , ti1 , . . . , tini
) =

ni∑
j=0

ti jei j ∈ ∆ni . (4.5)

Then (Xi;σNi) forms a WPH-space. We claim that σNi = τNi for every Ni = {xi0 , xi1 , . . . , xini
} ∈ ⟨Xi⟩ and

every i ∈ Ω. Indeed, let (ti0 , ti1 , . . . , tini
) =

∑ni
j=0 ti jei j ∈ ∆ni be any given. By (i) and (4.5), we have

τNi(
ni∑
j=0

ti jei j) =
ni∑
j=0

ti jτNi(ei j) =
ni∑
j=0

ti j xi j = σNi(
ni∑
j=0

ti jei j).

This implies that σNi = τNi for every i ∈ Ω. By (4.5) again, we can see that σNi(∆ni) = τNi(∆ni) = co(Ni)
for every i ∈ Ω and every Ni = {xi0 , xi1 , . . . , xini

} ∈ ⟨Xi⟩. Define Φ : C → X by Φ(z) =
∏

i∈Ω σNi(πi(z))
for every z ∈ C. Then by (i), for each i ∈ Ω, each Ni = {xi0 , xi1 , . . . , xini

} ∈ ⟨Xi⟩, and each single-valued
continuous mapping Ψ : T (

∏
i∈Ω σNi(∆ni)) → C, the composition Ψ ◦ T |∏i∈Ω σNi (∆ni ) ◦ Φ : C → 2C has

a fixed point, which implies that T ∈ B̃(X,Y). By (ii) and (4.5), for each y ∈ T (X), each i ∈ Ω, each
Ni = {xi0 , xi1 , . . . , xini

} ∈ ⟨Xi⟩, and each {xi j0
, xi j1

, . . . , xi jki
} ⊆ Ni

⋂
(Piy)αi(y), we have

σNi(∆ki) = co({xi j0
, xi j1

, . . . , xi jki
})

⊆ co((Piy)αi(y))
⊆ (Hiy)αi(y).

This shows that (Hiy)αi(y) is WPH-convex relative to (Piy)αi(y) for every i ∈ Ω and every y ∈ T (X). Hence,
(i) of Theorem 4.4 is satisfied. Now, we prove that (ii) of Theorem 4.4 is fulfilled. Indeed, for each i ∈ Ω
and each Qi ∈ ⟨Xi⟩, let X0

i = Z0
i and LQi = Z

′

i = co(X̃i
⋃

Qi). Since each X̃i is compact convex and
X0

i ⊆ X̃i, it follows that each LQi is compact convex subset of Xi containing Z0
i
⋃

Qi and hence, LQi is a
WPH-subspace of (Xi;σNi) such that Z0

i
⋃

Qi ⊆ LQi = Z
′

i . Furthermore, let LQ =
∏

i∈Ω LQi . Then LQ is a
compact subset of X. Since T is an upper semicontinuous set-valued mapping with nonempty compact
values, it follows from Proposition 3.1.11 of Aubin and Ekeland [43] that T (LQ) is compact subset of
Y . Therefore, all the requirements of Theorem 4.4 are satisfied. Hence, by Theorem 4.4, FCCPP has a
solution. This completes the proof. □

Remark 4.10. (ii) of Theorem 4.9 can be replaced by one of the following conditions:
(ii)′ For each y ∈ T (X) and each Ni ∈ ⟨(Piy)αi(y)⟩, co(Ni) ⊆ (Hiy)αi(y);
(ii)′′ For each y ∈ T (X), (Piy)αi(y) ⊆ (Hiy)αi(y) and the set (Hiy)αi(y) is convex.

Theorem 4.11. Let Y be a Hausdorff topological space and {Xi|i ∈ Ω} be a family of topological
vector spaces, where Ω is a finite or infinite index set. Let X =

∏
i∈Ω Xi and T : X → 2Y be an upper
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semicontinuous set-valued mapping with nonempty compact values. For each i ∈ Ω, let αi : Y → [0, 1)
be a function and let Hi : Y → F (Xi) and Pi : Y → F (Xi) be two fuzzy mappings such that the
following conditions hold:

(i) For each Ni ∈ ⟨Xi⟩ with |Ni| = ni + 1 and for each single-valued continuous mapping Ψ :
T (

∏
i∈Ω co(Ni))→

∏
i∈Ω ∆ni , the composition mapping Ψ ◦ T |∏i∈Ω co(Ni) has convex values;

(ii) For each y ∈ T (X), co((Piy)αi(y)) ⊆ (Hiy)αi(y);
(iii) There exists a nonempty subset X0

i which is contained in a compact convex subset X̃i of Xi such
that

⋂
xi∈X0

i
[cint{y ∈ Y : Piy(xi) > αi(y)}]c ⊆

⋃
xi∈Xi

cint{y ∈ Y : Piy(xi) > αi(y)}, where
⋂

xi∈X0
i
[cint{y ∈

Y : Piy(xi) > αi(y)}]c is a nonempty compact subset of Y or an empty set.

Then FCCPP has a solution.

Proof. For each i ∈ Ω and each Ni = {xi0 , xi1 , . . . , xini
} ∈ ⟨Xi⟩, we define a continuous mapping

σNi : ∆ni → co(Ni) ⊆ Xi by

σNi(
ni∑
j=0

ti jei j) =
ni∑
j=0

ti j xi j , ∀(ti0 , ti1 , . . . , tini
) =

ni∑
j=0

ti jei j ∈ ∆ni . (4.6)

Therefore, (Xi;σNi) forms a WPH-space. By (4.6), we have σNi(∆ni) = co(Ni) for each i ∈ Ω and each
Ni = {xi0 , xi1 , . . . , xini

} ∈ ⟨Xi⟩. Thus, we get

T
(∏

i∈Ω

σNi(∆ni)
)
= T

(∏
i∈Ω

co(Ni)
)
.

Now, we prove that T ∈ B̃(X,Y). Indeed, for each i ∈ Ω, each Ni ∈ ⟨Xi⟩ with |Ni| = ni + 1 and for each
single-valued continuous mappingΨ : T (

∏
i∈Ω σNi(∆ni))→

∏
i∈Ω ∆ni , by the assumption of T , we know

that the compositionΨ◦T |∏i∈Υ σNi (∆ni )◦Φ : C → 2C is an upper semicontinuous set-valued mapping with
nonempty compact convex values, where C =

∏
i∈Ω ∆ni , Φ(z) =

∏
i∈Ω σNi(πi(z)) for every z ∈ C and πi

is the projection of C onto ∆ni . For each i ∈ Ω, let Ei be the linear hull of the set {ei j : j = 0, 1, . . . , ni}.
Then Ei is a locally convex Hausdorff topological vector space as it is finite dimensional and ∆ni is
compact convex subset of Ei. Let E =

∏
i∈Ω Ei. Then E is also a Hausdorff locally convex topological

vector space and C =
∏

i∈Ω ∆ni is a compact convex subset of E. So, by Fan-Glicksberg fixed point
theorem (see Theorem 1 in Fan [41]), there exists ẑ ∈ C such that ẑ ∈ Ψ ◦ T |∏i∈Ω σNi (∆ni ) ◦ Φ(̂z), which
implies that T ∈ B̃(X,Y). The rest of proof is the same as the proof of Theorem 4.9. Therefore, by
Theorem 4.4, FCCPP has a solution. This completes the proof. □

Taking X = Y and T (x) = {x} for every x ∈ X, we can derive the following existence theorem of
solutions to FCFPP from Theorem 4.4.

Theorem 4.12. Let {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-spaces such that X =:
∏

i∈Ω Xi is a
Hausdorff topological space, where Ω is a finite or infinite index set. Let IX be the identity mapping on
X and IX ∈ B̃(X, X). For each i ∈ Ω, let αi : X → [0, 1) be a function and let Hi : X → F (Xi) and
Pi : X → F (Zi) be two fuzzy mappings such that the following conditions hold:

(i) For each x ∈ X, (Hix)αi(x) is WPH-convex relative to (Pix)αi(x);
(ii) There exists a nonempty subset Z0

i of Zi such that
⋂

zi∈Z0
i
[cint{x ∈ X : Pix(zi) > αi(x)}]c ⊆⋃

zi∈Zi
cint{x ∈ X : Pix(zi) > αi(x)}, where

⋂
zi∈Z0

i
[cint{x ∈ X : Pix(zi) > αi(x)}]c is a nonempty compact
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subset of X or an empty set, and for each Qi ∈ ⟨Zi⟩, there exists a nonempty subset LQi of Xi, which is
WPH-convex relative to some Z

′

i ⊆ Zi such that Z0
i
⋃

Qi ⊆ Z
′

i and LQ is compact, where LQ =
∏

i∈Ω LQi .

Then FCFPP has a solution.

Remark 4.13. By Lemma 2.1 of Al-Homidan and Ansari [33], one can see that Theorem 4.12
generalizes Theorem 3.3 of Al-Homidan and Ansari [33] from topological semilattice spaces to
WPH-spaces and from set-valued mappings to fuzzy mappings. So, combining Remark 3.4 of
Al-Homidan and Ansari [33], it is known that Theorem 4.12 extends Theorem 3.2 of Lan and
Webb [47], Theorem 3.1 of Lin et al. [48], and Theorem 2.1 of Singh et al. [49] to WPH-spaces and
fuzzy mappings.

If X = Y and T (x) = {x} for every x ∈ X, then we have the following theorem as a common
consequence of Theorems 4.9 and 4.11.

Theorem 4.14. Let {Xi|i ∈ Ω} be a family of Hausdorff topological vector spaces, where Ω is a finite
or infinite index set. Let X =

∏
i∈Ω Xi. For each i ∈ Ω, let αi : X → [0, 1) be a function and let

Hi : X → F (Xi) and Pi : X → F (Xi) be two fuzzy mappings such that the following conditions hold:

(i) For each x ∈ X, co((Pix)αi(x)) ⊆ (Hix)αi(x);
(ii) There exists a nonempty subset X0

i which is contained in a compact convex subset X̃i of Xi such
that

⋂
yi∈X0

i
[cint{x ∈ X : Pix(yi) > αi(x)}]c ⊆

⋃
yi∈Xi

cint{x ∈ X : Pix(yi) > αi(x)}, where
⋂

yi∈X0
i
[cint{x ∈

X : Pix(yi) > αi(x)}]c is a nonempty compact subset of X or an empty set.

Then FCFPP has a solution.

In Corollary 4.3, if X = Y and T (x) = {x} for every x ∈ X, then Corollary 4.3 reduces to the
following corollary.

Corollary 4.15. Let {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-spaces such that X =
∏

i∈Ω Xi is a
compact Hausdorff topological space, where Ω is a finite or infinite index set. Let IX ∈ B̃(X, X) be the
identity mapping on X. For each i ∈ Ω, let αi : X → [0, 1) be a function and let Hi : X → F (Xi) and
Pi : X → F (Zi) be two fuzzy mappings such that the following conditions hold:

(i) For each x ∈ X, (Hix)αi(x) is WPH-convex relative to (Pix)αi(x);
(ii) X =

⋃
zi∈Zi

cint{x ∈ X : Pix(zi) > αi(x)}.

Then FCFPP has a solution.

By Corollary 4.15, we have the following existence theorem of solutions to FCFPP.

Theorem 4.16. Let {(Xi,Zi;σNi)|i ∈ Ω} be a family of WPH-spaces such that X =
∏

i∈Ω Xi is a compact
Hausdorff topological space, where Ω is a finite or infinite index set. Let IX ∈ B̃(X, X) be the identity
mapping on X. For each i ∈ Ω, let αi : X → [0, 1) be a function and let Hi : X → F (Xi) and
Pi : X → F (Zi) be a fuzzy mapping such that the following conditions hold:

(i) Hi is WPH-Pi-quasiconcave on X;
(ii) X =

⋃
zi∈Zi

cint{x ∈ X : Pix(zi) > αi(x)}.

Then FCFPP has a solution. Furthermore, if, for each i ∈ Ω, the function (x, yi) 7→ Hix(yi) is upper
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semicontinuous on X × Xi and for each i ∈ Ω and each fixed yi ∈ Xi, the function x 7→ Hix(yi) is lower
semicontinuous on X, then there exists x̂ ∈ X such that, for each i ∈ Ω, Hix̂(x̂i) = maxyi∈Xi Hix̂(yi).

Proof. In order to apply Corollary 4.15, we only show that (Hix)αi(x) is WPH-convex relative to (Pix)αi(x)

for every i ∈ Ω and every x ∈ X. We proceed by contradiction. Suppose that there exist i ∈ Ω, x ∈ X,
Ni = {zi0 , zi1 , . . . , zini

} ∈ ⟨Zi⟩ and {zi j0
, zi j1

, . . . , zi jki
} ⊆ Ni

⋂
(Pix)αi(x) such that σNi(∆ki) ⊈ (Hix)αi(x). Then

there exists qi ∈ σNi(∆ki) such that yi < (Hix)αi(x); i.e., Hix(yi) ≤ αi(x). Since {zi j0
, zi j1

, . . . , zi jki
} ⊆

Ni
⋂

(Pix)αi(x), it follows that Pix(zi jl
) > αi(x) for every l ∈ {0, 1, . . . , ki}. By (i), we obtain the following

contradiction
αi(x) ≥ Hix(yi) ≥ min

0≤l≤ki
Pix(zi jl

) > αi(x),

which implies that (Hix)αi(x) is WPH-convex relative to (Pix)αi(x) for every i ∈ Ω and every x ∈ X.
Therefore, it follows from Corollary 4.15 that the first part of the conclusion of Theorem 4.16 holds.

Now, we prove that the second part of the conclusion of Theorem 4.16 holds. For each i ∈ Ω, let us
define a function ρi : X → [0, 1] by ρi(x) = max

yi∈Xi
Hix(yi) for every x ∈ X, which is well defined since

for each i ∈ Ω and each x ∈ X, Hix(yi) is upper semicontinuous function on the compact set Xi. By
Theorem 1 of Aubin [50, p. 67] and the fact that the function (x, yi) 7→ Hix(yi) is upper semicontinuous
on X × Xi for every i ∈ Ω, we know that ρi is upper semicontinuous on X. For each i ∈ Ω and each
n ∈ {1, 2, . . . , }, we define a set-valued mapping W(i,n) : X → 2Xi as follows:

W(i,n)(x) = {yi ∈ Xi : Hix(yi) > ρi(x) −
1
n
}, ∀ x ∈ X.

Then W(i,n)(x) is nonempty for every i ∈ Ω, every n ∈ {1, 2, . . . , } and every x ∈ X. Therefore, we have

X =
⋃
yi∈Xi

W−1
(i,n)(yi). (4.7)

Applying (i) and the argument similar to that in the proof of the first part, we can prove that W(i,n)(x) is
a WPH-convex subspace of (Xi;σNi) for every i ∈ Ω, every n ∈ {1, 2, . . . , } and every x ∈ X. For each
i ∈ Ω, each n ∈ {1, 2, . . . , } and each yi ∈ Xi, we have

W−1
(i,n)(yi) = {x ∈ X : Hix(yi) > ρi(x) −

1
n
}.

Since for each i ∈ Ω and each fixed yi ∈ Xi, the function x 7→ Hix(yi) is lower semicontinuous on X and
ρi is upper semicontinuous on X, it follows that W−1

(i,n)(yi) is open in X. By (4.7) and the compactness of
X, there exists {y0

(i,n), y
1
(i,n), . . . , y

m(i,n)
(i,n) } ∈ ⟨Xi⟩ such that

X =
m(i,n)⋃

j=0

W−1
(i,n)(y

j
(i,n)),

where m(i, n) is a positive integer. Let {η j}
m(i,n)
j=0 be the continuous partition of unity subordinated to the

open cover {W−1
(i,n)(y

j
(i,n))| j = 0, 1, . . . ,m(i, n)}; i.e.,
η j : X → [0, 1] is continuous for every j ∈ {0, 1, . . . ,m(i, n)};
η j(x) > 0⇒ x ∈ W−1

(i,n)(y
j
(i,n));∑m(i,n)

j=0 η j(x) = 1 for every x ∈ X.
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Subsequently, we define a continuous mapping η(i,n) : X → ∆m(i,n) by η(i,n)(x) =
∑m(i,n)

j=0 η j(x)e j for
every x ∈ X. Then we have η(i,n)(x) =

∑
j∈J(x) η j(x)e j ∈ ∆|J(x)|−1 for every x ∈ X, where J(x) := { j ∈

{0, 1, . . . ,m(i, n)} : η j(x) > 0}. For the finite set {y0
(i,n), y

1
(i,n), . . . , y

m(i,n)
(i,n) }, by the definition of a WPH-

space, there exists an upper semicontinuous set-valued mapping σ(i,n) : ∆m(i,n) → 2Xi . Consider an
upper semicontinuous set-valued mapping f(i,n) : X → 2Xi defined by f(i,n)(x) = σ(i,n)(η(i,n)(x)) for every
x ∈ X. By the fact that W(i,n)(x) is a WPH-convex subspace of (Xi;σNi), we can easily verify that
f(i,n)(x) = σ(i,n)(η(i,n)(x)) ⊆ W(i,n)(x) for every i ∈ Ω, every n ∈ {1, 2, . . . , }, and every x ∈ X.

For each n ∈ {1, 2, . . . , }, a set-valued mappingΦn : C(n)→ 2X and a continuous mappingΨn : X →
C(n) are defined by Φn(z) =

∏
i∈Ω σ(i,n)(πi(z)) for every z ∈ C(n) and by Ψn(x) =

∏
i∈Ω η(i,n)(x) for every

x ∈ X, respectively, where C(n) =
∏

i∈Ω ∆m(i,n) and πi : C(n)→ ∆m(i,n) is the projection of C(n) onto ∆m(i,n) .
Since IX ∈ B̃(X, X), it follows that, for each n ∈ {1, 2, . . . , }, the composition Ψn ◦ Φn : C(n) → 2C(n)

has a fixed point, which implies that there exists ẑn ∈ C(n) such that ẑn ∈ Ψn ◦Φn(̂zn). Then there exists
x̂n ∈ Φn(̂zn) such that ẑn = Ψn(x̂n) for every n ∈ {1, 2, . . . , } and thus, for each n ∈ {1, 2, . . . , }, we have

x̂n = (x̂(i,n))i∈Ω ∈ Φn(̂zn) = Φn ◦ Ψn(x̂n) = Φn

(∏
i∈Ω

η(i,n)(x̂n)
)

=
∏
i∈Ω

σ(i,n)

(
πi

(∏
i∈Ω

η(i,n)(x̂n)
))

=
∏
i∈Ω

(σ(i,n) ◦ η(i,n))(x̂n).

It follows that x̂(i,n) ∈ (σ(i,n) ◦ η(i,n))(x̂n) ⊆ W(i,n)(x̂n) for every i ∈ Ω and every n ∈ {1, 2, . . . , }. By the
definition of W(i,n), we get Hix̂n

(x̂(i,n)) > ρi(x̂n) − 1
n . By the compactness of X, without loss of generality,

we may assume that x̂n → x̂, that is, x̂(i,n) → x̂i for every i ∈ Ω. Since the function x 7→ Hix(yi) is
lower semicontinuous on X for every i ∈ Ω and every fixed yi ∈ Xi, it follows that ρi is also lower
semicontinuous on X. Therefore, by this fact and the condition that the function (x, yi) 7→ Hix(yi) is
upper semicontinuous on X × Xi, we have, for each i ∈ Ω,

Hix̂(x̂i) ≥ lim
n→∞

Hix̂n
(x̂(i,n)) ≥ lim

n→∞
(ρi(x̂n) −

1
n

)

≥ lim
n→∞

(ρi(x̂n) −
1
n

)

≥ ρi(x̂) = max
yi∈Xi

Hix̂(yi).

Hence, Hix̂(x̂i) = maxyi∈Xi Hix̂(yi) for every i ∈ Ω. The proof is complete. □

5. Generalized fuzzy games

In this section, if not specified, for convenience we may assume from now on that every upper
semicontinuous set-valued mapping σNi from a standard simplex to a topological space involved in
WPH-spaces has nonempty compact values. By Theorem 3.4, we establish new existence theorems of
equilibria for the generalized fuzzy games and generalized fuzzy qualitative games in the framework
of noncompact WPH-spaces. Before doing so, we need to explain the relevant issues as follows.

Let Ω be a finite or an infinite set of agents. For each i ∈ Ω, let Xi and Zi be the sets of actions
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available to the agent i. Let X =
∏

i∈Ω Xi. A generalized fuzzy game is a family of ordered quintuple Γ =
(Xi,Zi, Ai, Bi, Fi, Pi, ai, bi, ci, pi)i∈Ω, where Ai : X → F (Zi), Bi, Fi : X → F (Xi) are fuzzy constraint
mappings and Pi : X × X → F (Zi) is a fuzzy preference mapping. An equilibrium of Γ is a point
(x̂, ŷ) ∈ X × X such that for each i ∈ Ω, x̂i ∈ (Bix̂)ai(x̂), ŷi ∈ (Fix̂)bi(x̂) and (Aix̂)ci(x̂)

⋂
(Pi(x̂,̂y))pi(x̂,̂y) = ∅,

where ai, bi, ci : X → [0, 1) and pi : X × X → [0, 1) are fuzzy constraint functions. For each i ∈ Ω,
let A−1

ici
: Zi → 2X be defined by A−1

ici
(zi) = {x ∈ X : Aix(zi) > ci(x)} for every zi ∈ Zi. Using the same

approach, we can define F−1
ibi

: Xi → 2X and P−1
ipi

: Zi → 2X×X. We call Γ = (Xi,Zi, Fi, Pi, bi, pi)i∈Ω a
generalized fuzzy qualitative game if for each i ∈ Ω, Xi and Zi are the sets of actions available to the
agent i, Fi : X → F (Xi) is a fuzzy constraint mapping, and Pi : X × X → F (Zi) is a fuzzy preference
mapping. An equilibrium of Γ = (Xi,Zi, Fi, bi, Pi)i∈Ω is a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω,
ŷi ∈ (Fix̂)bi(x̂) and (Pi(x̂,̂y))pi(x̂,̂y) = ∅. If the constraint set-valued mappings Ai, Bi, Fi and the preference
mapping Pi are defined by using the ith characteristic functions,and ai ≡ bi ≡ ci ≡ pi ≡ 0, then the
equilibrium for generalized fuzzy games (respectively, generalized fuzzy qualitative games) implies
the equilibrium for generalized games (respectively, generalized qualitative games).

Remark 5.1. Our definitions of generalized fuzzy games extend the corresponding definitions of the
games in [16, 33, 42, 48–53] to fuzzy settings, and also generalize the definition of the generalized
fuzzy games due to Kim and Lee [9].

Remark 5.2. As remarked in [9], the fuzzy constraint and preference mappings are very useful in
the process of analysing real economic models. In fact, the constraint and preference sets of each
player have fuzzy behavioral characteristics in the generalized games in strategic markets. In order to
obtain the possible small cores, Aubin [50] introduced the concepts of fuzzy market cooperative games
and fuzzy coalitions by embedding set of coalitions identified with {0, 1}n into the subset [0, 1]n of
fuzzy coalitions. Therefore, as the same way, the concepts of generalized fuzzy game and generalized
fuzzy qualitative game can provide useful frameworks for analysing fuzzy behaviors of the market
economies.

As an application of Theorem 3.4, we are ready to prove the following existence theorem of
equilibria for generalized fuzzy games in noncompact WPH-spaces.

Theorem 5.3. Let Ω be a set of agents (finite or infinite) and {(Xi,Zi;σNi)|i ∈ Ω} be a family of
Hausdorff WPH-spaces. Let Γ = (Xi,Zi, Ai, Bi, Fi, Pi, ai, bi, ci, pi)i∈Ω be a generalized fuzzy game and
IΠi∈Ω(Xi×Xi) ∈ D̃B(Πi∈Ω(Xi×Xi),Πi∈Ω(Xi×Xi)), where IΠi∈Ω(Xi×Xi) is the identity mapping on Πi∈Ω(Xi×Xi).
For each i ∈ Ω, let Pi : X×X → F (Xi), F i : X → F (Zi) be two fuzzy mappings and let li : X → [0, 1),
mi : X × X → [0, 1) be two fuzzy sets. For each i ∈ Ω, assume that the following conditions hold:

(i) For each x ∈ X, (Bix)ai(x) is WPH-convex relative to (Aix)ci(x);
(ii) For each x ∈ X, (Fix)bi(x) is WPH-convex relative to (F ix)li(x);
(iii) For each (x, y) ∈ Wi, xi < WPH((Pi(x,y))mi(x,y), (Pi(x,y))pi(x,y)), where Wi = {(x, y) ∈ X × X :

(Aix)ci(x)
⋂

(Pi(x,y))pi(x,y) , ∅};
(iv) There exist two nonempty subsets Z0

i and Z1
i of Zi such that⋃

(ui,vi)∈Zi×Zi

cint{((A−1
ici

(ui)
⋂

F
−1
ili

(vi)) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i )}

contains
⋂

(ui,vi)∈Z0
i ×Z1

i
[cint{((A−1

ici
(ui)

⋂
F
−1
ili

(vi)) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i )}]c which is a nonempty compact
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subset of X × X or an empty set, and for each Qi,Mi ∈ ⟨Zi⟩, there exist nonempty compact subsets
LQi , LMi of Xi such that LQi×LMi is WPH-convex relative to some Z′i ⊆ Zi×Zi and (Z0

i ×Z1
i )

⋃
(Qi×Mi) ⊆

Z′i .

Then there exists a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω, x̂i ∈ (Bix̂)ai(x̂), ŷi ∈ (Fix̂)bi(x̂) and
(Aix̂)ci(x̂)

⋂
(Pi(x̂,̂y))pi(x̂,̂y) = ∅.

Proof. For each i ∈ Ω and each Ñi = {(zi
0,w

i
0), (zi

1,w
i
1), . . . , (zi

ni
,wi

ni
)} ∈ ⟨Zi × Zi⟩, it follows from the

definition of a WPH-space that there exist two upper semicontinuous set-valued mappings σπl(Ñi) :
∆ni → 2Xi and σπr(Ñi) : ∆ni → 2Xi , which have nonempty compact values. For each i ∈ Ω, we define a
set-valued mapping σπl(Ñi) × σπr(Ñi) : ∆ni → 2Xi×Xi by

(σπl(Ñi) × σπr(Ñi))(p) = σπl(Ñi)(p) × σπr(Ñi)(p), ∀ p ∈ ∆ni ,

where πl(Ñi) (respectively, πr(Ñi)) denotes the projection of Ñi onto the left (respectively, right) of
Zi × Zi. Then it follows from Lemma 3 due to Fan [41] that the set-valued mapping σπl(Ñi) × σπr(Ñi)
is upper semicontinuous and has nonempty compact values. Thus, one can see that {(Xi × Xi,Zi ×

Zi;σπl(Ñi) × σπr(Ñi))|i ∈ Ω} forms a family of WPH-spaces.
For each i ∈ Ω, defne two set-valued mappings S i : X × X → 2Zi×Zi and Ti : X × X → 2Xi×Xi by

setting, for every (x, y) ∈ X × X,

S i(x, y) =
{

[(Pi(x,y))pi(x,y)
⋂

(Aix)ci(x)] × (F ix)li(x), if (x, y) ∈ Wi,

(Aix)ci(x) × (F ix)li(x), if (x, y) ∈ Wc
i ,

and

Ti(x, y) =
{

[WPH((Pi(x,y))mi(x,y), (Pi(x,y))pi(x,y))
⋂

(Bix)ai(x)] × (Fix)bi(x), if (x, y) ∈ Wi,

(Bix)ai(x) × (Fix)bi(x), if (x, y) ∈ Wc
i ,

respectively. Now, we show that Ti(x, y) is WPH-convex relative to S i(x, y) for every i ∈ Ω and every
(x, y) ∈ Wi. In fact, for each i ∈ Ω, each (x, y) ∈ Wi, each Ñi = {(zi

0,w
i
0), (zi

1,w
i
1), . . . , (zi

ni
,wi

ni
)} ∈ ⟨Zi×Zi⟩,

and each {(zi
j0
,wi

j0
), (zi

j1
,wi

j1
), . . . , (zi

jki
,wi

jki
)} ⊆ S i(x, y)

⋂
{(zi

0,w
i
0), (zi

1,w
i
1), . . . , (zi

ni
,wi

ni
)}, we get

{zi
j0 , z

i
j1 , . . . , z

i
jki
} ⊆ (Pi(x,y))pi(x,y)

⋂
{zi

0, z
i
1, . . . , z

i
ni
} = (Pi(x,y))pi(x,y)

⋂
πl(Ñi),

{zi
j0 , z

i
j1 , . . . , z

i
jki
} ⊆ (Aix)ci(x)

⋂
{zi

0, z
i
1, . . . , z

i
ni
} = (Aix)ci(x)

⋂
πl(Ñi), and

{wi
j0 ,w

i
j1 , . . . ,w

i
jki
} ⊆ (F ix)li(x)

⋂
{wi

0,w
i
1, . . . ,w

i
ni
} = (F ix)li(x)

⋂
πr(Ñi).

Then by (i), (ii), and the definition of a WPH-hull, we have

σπl(Ñi)(∆ki) ⊆ WPH((Pi(x,y))mi(x,y), (Pi(x,y))pi(x,y))
⋂

(Bix)ai(x) and σπr(Ñi)(∆ki) ⊆ (Fix)bi(x).

It follows that σÑi
(∆ki) = σπl(Ñi)(∆ki) × σπr(Ñi)(∆ki). Thus, we have

σÑi
(∆ki) ⊆ (WPH((Pi(x,y))mi(x,y), (Pi(x,y))pi(x,y))

⋂
(Bix)ai(x)) × (Fix)bi(x)
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which implies that Ti(x, y) is WPH-convex relative to S i(x, y) for every i ∈ Ω and every (x, y) ∈ Wi. The
same method can be used to prove that Ti(x, y) is WPH-convex relative to S i(x, y) for every i ∈ Ω and
every (x, y) ∈ Wc

i . Therefore, these two scenarios lead to the conclusion that Ti(x, y) is WPH-convex
relative to S i(x, y) for every i ∈ Ω and every (x, y) ∈ X × X.

For each i ∈ Ω and each (ui, vi) ∈ Zi × Zi, we have

S −1
i (ui, vi) = (P−1

ipi
(ui)

⋂
(A−1

ici
(ui) × X)

⋂
(F
−1
ibi

(vi) × X))⋃
(Wc

i

⋂
(A−1

ici
(ui) × X)

⋂
(F
−1
ibi

(vi) × X))

= ((A−1
ici

(ui)
⋂

F
−1
ibi

(vi)) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i ).

According to (iv), for each i ∈ Ω, there exists a nonempty subset Z0
i × Z1

i of Zi × Zi such that⋂
(ui,vi)∈Z0

i ×Z1
i

(cintS −1
i (ui, vi))c ⊆

⋃
(ui,vi)∈Zi×Zi

cintS −1
i (ui, vi).

For each i ∈ Ω, setting K̂i :=
⋂

(ui,vi)∈Z0
i ×Z1

i
(cintS −1

i (ui, vi))c, we have

K̂i ⊆
⋃

(ui,vi)∈Zi×Zi

cintS −1
i (ui, vi),

where K̂i is a nonempty compact subset of X × X or an empty set. If K̂i is nonempty compact for every
i ∈ Ω, then there exist Qi ∈ ⟨Zi⟩ and Mi ∈ ⟨Zi⟩ such that

K̂i ⊆
⋃

(ui,vi)∈Qi×Mi

cintS −1
i (ui, vi). (5.1)

Thus, by (5.1), we have

X × X = (X × X \ K̂i)
⋃

K̂i

=

( ⋃
(ui,vi)∈Z0

i ×Z1
i

cintS −1
i (ui, vi)

)⋃( ⋃
(ui,vi)∈Qi×Mi

cintS −1
i (ui, vi)

)
=

⋃
(ui,vi)∈(Z0

i ×Z1
i )∪(Qi×Mi)

cintS −1
i (ui, vi).

If K̂i = ∅, then for every Qi ∈ ⟨Zi⟩ and every Mi ∈ ⟨Zi⟩, we have

X × X =
⋃

(ui,vi)∈Z0
i ×Z1

i

cintS −1
i (ui, vi) =

⋃
(ui,vi)∈(Z0

i ×Z1
i )∪(Qi×Mi)

cintS −1
i (ui, vi). (5.2)

Therefore, (5.2) holds for each i ∈ Ω and the finite sets Qi and Mi in (5.1). By (iv) again, for each
i ∈ Ω and the finite sets Qi and Mi, there exist nonempty compact subsets LQi , LMi of Xi × Xi such that
LQi×LMi is WPH-convex relative to some Z′i ⊆ Zi×Zi and (Z0

i ×Z1
i )

⋃
(Qi×Mi) ⊆ Z′i . Let LQ =

∏
i∈I LQi

and LM =
∏

i∈I LMi . Hence, by (5.2), we have

LQ × LM ⊆ X × X =
⋃

(ui,vi)∈Z
′

i

cintS −1
i (ui, vi). (5.3)
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Observe that {(LQi × LMi ,Zi
′;σπl(Ñi) × σπr(Ñi))|i ∈ Ω} is a family of WPH-spaces. For each i ∈ Ω,

define two set-valued mappings S ′i : LQ × LM → 2Zi
′

and T ′i : LQ × LM → 2LQi×LMi by

S ′i(x, y) = S i(x, y)
⋂

Zi
′ and T ′i (x, y) = Ti(x, y)

⋂
(LQi × LMi), ∀ (x, y) ∈ LQ × LM.

Now, we check all the conditions of Theorem 3.4 for S ′i and T ′i . It is obvious that LQ×LM is a nonempty
compact subset of X × X. By (5.3), we have

LQ × LM =

( ⋃
(ui,vi)∈Z

′

i

cintS −1
i (ui, vi)

)⋂(
LQ × LM

)
=

⋃
(ui,vi)∈Z

′

i

intLQ×LM (S −1
i (ui, vi)

⋂
(LQ × LM))

=
⋃

(ui,vi)∈Z
′

i

intLQ×LM S ′−1
i (ui, vi).

We show that T ′i (x, y) is WPH-convex relative to S ′i(x, y) for every i ∈ Ω and every (x, y) ∈ LQ × LM.
In fact, since (LQi × LMi ,Zi

′;σπl(Ñi) × σπr(Ñi)) is a WPH-space and Ti(x, y) is WPH-convex relative to
S i(x, y) for every i ∈ Ω and every (x, y) ∈ X × X, it follows that for each (x, y) ∈ LQ × LM, each Ñi =

{(zi
0,w

i
0), (zi

1,w
i
1), . . . , (zi

ni
,wi

ni
)} ∈ ⟨Zi

′⟩, and each {(zi
j0
,wi

j0
), (zi

j1
,wi

j1
), . . . , (zi

jki
,wi

jki
)} ⊆ S ′i(x, y)

⋂
Ñi =

S i(x, y)
⋂

Zi
′
⋂

Ñi, we have σÑi
(∆ki) = σπl(Ñi)(∆ki) × σπr(Ñi)(∆ki) ⊆ Ti(x, y)

⋂
(LQi × LMi) = T ′i (x, y).

So, by Theorem 3.4, for each i ∈ Ω, there exist Ñ∗i = {(z
i
0,w

i
0), (zi

1,w
i
1), . . . , (zi

ni
,wi

ni
)} ∈ ⟨Zi

′⟩ and
an upper semicontinuous set-valued mapping fi : LQ × LM → 2LQi×LMi such that fi = σÑ∗i

◦ βi and
fi(x, y) = σÑ∗i

(βi(x, y)) ⊆ T ′i (x, y) for every (x, y) ∈ LQ × LM, where σÑ∗i
: ∆ni → 2LQi×LMi is an

upper semicontinuous set-valued mapping with nonempty compact values, βi : LQ × LM → ∆ni is a
continuous single-valued mapping, and ni is a positive integer. Further, we define a set-valued mapping
Φ : C → 2

∏
i∈Ω(LQi×LMi ) by

Φ(z) =
∏
i∈Ω

(
σπl(Ñ∗i )πi(z) × σπr(Ñ∗i )πi(z)

)
(5.4)

for every z ∈ C and a continuous mapping Ψ :
∏

i∈Ω(LQi × LMi)→ C by

Ψ((xi, yi)i∈Ω) = (βi((xi)i∈Ω, (yi)i∈Ω))i∈Ω, ∀ (x, y) ∈
∏
i∈Ω

(LQi × LMi), (5.5)

where C =
∏

i∈Ω ∆ni and πi : C → ∆ni is the projection of C onto ∆ni . Since IΠi∈Ω(Xi×Xi) ∈ D̃B(Πi∈Ω(Xi ×

Xi),Πi∈Ω(Xi × Xi)), it follows that I|∏i∈Ω(LQi×LMi ) ∈ D̃B(
∏

i∈Ω(LQi × LMi),
∏

i∈Ω(LQi × LMi)) and thus,
the composition Ψ ◦ Φ : C → 2C has a fixed point, which implies that there exists ẑ ∈ C such that
ẑ ∈ Ψ ◦ Φ(̂z). Hence, there exists (x̂i, ŷi)i∈Ω ∈ Φ(̂z) such that ẑ = Ψ((x̂i, ŷi)i∈Ω) and thus, by (5.4) and
(5.5), we have

(x̂i, ŷi)i∈Ω ∈ Φ(̂z) = Φ(Ψ((x̂i, ŷi)i∈Ω)) = Φ((βi((x̂i)i∈Ω, (̂yi)i∈Ω))i∈Ω)

=
∏
i∈Ω

(
σπl(Ñ∗i )(βi((x̂i)i∈Ω, (̂yi)i∈Ω)) × σπr(Ñ∗i )(βi((x̂i)i∈Ω, (̂yi)i∈Ω))

)
=

∏
i∈Ω

(σπl(Ñ∗i ) × σπr(Ñ∗i ))(βi((x̂i)i∈Ω, (̂yi)i∈Ω))
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=
∏
i∈Ω

σÑ∗i
(βi(x̂, ŷ)) ⊆

∏
i∈Ω

T ′i (x̂, ŷ).

This, together with the definition of T ′i , implies that (x̂i, ŷi) ∈ Ti(x̂, ŷ) for every i ∈ Ω. If (x̂, ŷ) ∈ Wi for
some i ∈ Ω, then we have

(x̂i, ŷi) ∈ (WPH((Pi(x̂,̂y))mi(x̂,̂y), (Pi(x̂,̂y))pi(x̂,̂y))
⋂

(Bix̂)ai(x̂)) × (Fix̂)bi(x̂). (5.6)

By (5.6), x̂i ∈ WPH((Pi(x̂,̂y))mi(x̂,̂y), (Pi(x̂,̂y))pi(x̂,̂y))
⋂

(Bix̂)ai(x̂) and thus, x̂i ∈ WPH((Pi(x̂,̂y))mi(x̂,̂y), (Pi(x̂,̂y))pi(x̂,̂y)),
which contradicts (iii). Therefore, we must have that (x̂, ŷ) ∈ Wc

i for every i ∈ Ω. By the definitions of
Wc

i and Ti(x, y), we know that for each i ∈ Ω, x̂i ∈ (Bix̂)ai(x̂), ŷi ∈ (Fix̂)bi(x̂) and (Aix̂)ci(x̂)
⋂

(Pi(x̂,̂y))pi(x̂,̂y) = ∅.
This completes the proof. □

Corollary 5.4. Let Ω be a set of agents (finite or infinite) and {(Xi,Zi;σNi)|i ∈ Ω} be a family of
Hausdorff WPH-spaces. Let Γ = (Xi,Zi, Ai, Bi, Fi, Pi, ai, bi, ci, pi)i∈Ω be a generalized fuzzy game and
IΠi∈Ω(Xi×Xi) ∈ D̃B(Πi∈Ω(Xi×Xi),Πi∈Ω(Xi×Xi)), where IΠi∈Ω(Xi×Xi) is the identity mapping on Πi∈Ω(Xi×Xi).
For each i ∈ Ω, let Pi : X×X → F (Xi), F i : X → F (Zi) be two fuzzy mappings and let li : X → [0, 1),
mi : X × X → [0, 1) be two fuzzy sets. For each i ∈ Ω, assume that the following conditions hold:

(i) For each x ∈ X, (Bix)ai(x) is WPH-convex relative to (Aix)ci(x);
(ii) For each x ∈ X, (Fix)bi(x) is WPH-convex relative to (F ix)li(x);

(iii) For each (x, y) ∈ Wi, xi < WPH((Pi(x,y))mi(x,y), (Pi(x,y))pi(x,y)), where Wi = {(x, y) ∈ X × X :
(Aix)ci(x)

⋂
(Pi(x,y))pi(x,y) , ∅};

(iv) There exist two nonempty subsets Z0
i and Z1

i of Zi such that⋃
(ui,vi)∈Zi×Zi

cint{((A−1
ici

(ui)
⋂

F
−1
ili

(vi)) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i )}

contains
⋂

(ui,vi)∈Z0
i ×Z1

i
[cint{((A−1

ici
(ui)

⋂
F
−1
ili

(vi)) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i )}]c which is a nonempty compact

subset of X × X or an empty set, and for each Qi,Mi ∈ ⟨Zi⟩, there exist nonempty compact subsets
LQi , LMi of Xi such that LQi×LMi is WPH-convex relative to some Z′i ⊆ Zi×Zi and (Z0

i ×Z1
i )

⋃
(Qi×Mi) ⊆

Z′i .

Then there exists a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω, x̂i ∈ (Bix̂)ai(x̂), ŷi ∈ (Fix̂)bi(x̂) and
(Aix̂)ci(x̂)

⋂
(Pi(x̂,̂y))pi(x̂,̂y) = ∅.

Proof. By (iii), we have xi < WPH((Pi(x,y))mi(x,y), (Pi(x,y))pi(x,y)) for every (x, y) ∈ Wi, where Wi = {(x, y) ∈
X × X : (Aix)ci(x)

⋂
(Pi(x,y))pi(x,y) , ∅}. Therefore, by Theorem 5.3, the conclusion of Corollary 5.4 holds.

This completes the proof. □
As a direct consequence of Theorem 5.3, we have the following existence theorem of equilibria for

generalized fuzzy qualitative games in noncompact WPH-spaces.

Theorem 5.5. Let Ω be a set of agents (finite or infinite) and {(Xi,Zi;σNi)|i ∈ Ω} be a family of
Hausdorff WPH-spaces. Let Γ = (Xi,Zi, Fi, Pi, bi, pi)i∈Ω be a generalized fuzzy game and IΠi∈Ω(Xi×Xi) ∈

D̃B(Πi∈Ω(Xi × Xi),Πi∈Ω(Xi × Xi)), where IΠi∈Ω(Xi×Xi) is the identity mapping on Πi∈Ω(Xi × Xi). For each
i ∈ Ω, let Pi : X × X → F (Xi), F i : X → F (Zi) be two fuzzy mappings and let li : X → [0, 1),
mi : X × X → [0, 1) be two fuzzy sets. For each i ∈ Ω, assume that the following conditions hold:
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(i) For each x ∈ X, (Fix)bi(x) is WPH-convex relative to (F ix)li(x);
(ii) For every (x, y) ∈ Wi = {(x, y) ∈ X × X : (Pi(x,y))pi(x,y) , ∅}, xi < WPH((Pi(x,y))mi(x,y), (Pi(x,y))pi(x,y));
(iii) There exist two nonempty subsets Z0

i and Z1
i of Zi such that⋃

(ui,vi)∈Zi×Zi

cint{(F
−1
ibi

(vi) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i )}

contains
⋂

(ui,vi)∈Z0
i ×Z1

i
[cint{(F

−1
ibi

(vi) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i )}]c which is a nonempty compact subset of

X × X or an empty set, and for each Qi,Mi ∈ ⟨Zi⟩, there exist nonempty compact subsets LQi , LMi of Xi

such that LQi × LMi is WPH-convex relative to some Z′i ⊆ Zi × Zi and (Z0
i × Z1

i )
⋃

(Qi × Mi) ⊆ Z′i .

Then there exists a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω, ŷi ∈ (Fix̂)bi(x̂) and (Pi(x̂,̂y))pi(x̂,̂y) = ∅.

Proof. For each i ∈ I, let (Aix)ci(x) ≡ Zi and (Bix)ai(x) ≡ Xi for every x ∈ X. Then we have A−1
ici

(zi) =
B−1

iai
(xi) = X for every i ∈ I, every zi ∈ Zi, and every xi ∈ Xi. Therefore, by Theorem 5.3, the conclusion

of Theorem 5.5 holds. This completes the proof. □

As a special case of Theorem 5.3, we can obtain the following existence theorem of equilibria for
generalized fuzzy games in noncompact WPH-spaces.

Theorem 5.6. Let Ω be a set of agents (finite or infinite) and {(Xi;σNi)|i ∈ Ω} be a family of Hausdorff
WPH-spaces. Let Γ = (Xi, Ai, Bi, Fi, Pi, ai, bi, ci, pi)i∈Ω be a generalized fuzzy game and IΠi∈Ω(Xi×Xi) ∈

D̃B(Πi∈Ω(Xi × Xi),Πi∈Ω(Xi × Xi)), where IΠi∈Ω(Xi×Xi) is the identity mapping on Πi∈Ω(Xi × Xi). For each
i ∈ Ω, assume that the following conditions hold:

(i) For each x ∈ X, (Bix)ai(x) is WPH-convex relative to (Aix)ci(x);
(ii) For each x ∈ X, (Fix)bi(x) is a WPH-convex subspace of (Xi;σNi);
(iii) For each (x, y) ∈ Wi, xi < WPH((Pi(x,y))pi(x,y), (Pi(x,y))pi(x,y)), where Wi = {(x, y) ∈ X × X :

(Aix)ci(x)
⋂

(Pi(x,y))pi(x,y) , ∅};
(iv) There exist two nonempty subsets X0

i and X1
i of Xi such that⋃

(ui,vi)∈Xi×Xi

cint{((A−1
ici

(ui)
⋂

F−1
ibi

(vi)) × X)
⋂

(P−1
ipi

(ui)
⋃

Wc
i )}

contains
⋂

(ui,vi)∈X0
i ×X1

i
[cint{((A−1

ici
(ui)

⋂
F−1

ibi
(vi)) × X)

⋂
(P−1

ipi
(ui)

⋃
Wc

i )}]c which is a nonempty compact
subset of X × X or an empty set, and for each Qi,Mi ∈ ⟨Xi⟩, there exist nonempty compact subsets
LQi , LMi of Xi such that LQi×LMi is WPH-convex relative to some X′i ⊆ Xi×Xi and (X0

i ×X1
i )

⋃
(Qi×Mi) ⊆

X′i .

Then there exists a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω, x̂i ∈ (Bix̂)ai(x̂), ŷi ∈ (Fix̂)bi(x̂) and
(Aix̂)ci(x̂)

⋂
(Pi(x̂,̂y))pi(x̂,̂y) = ∅.

Proof. For each i ∈ I, let Xi = Zi, Pi = Pi, F i = Fi, pi = mi, and bi = li. Then the conclusion of
Theorem 5.6 holds from Theorem 5.3. This completes the proof. □

Remark 5.7. (1) If Xi is a compact Hausdorff WPH-space for every i ∈ Ω, then we can see that (iv)
of Theorem 5.6 is trivially fulfilled by letting X0

i = X1
i = LQi = LMi = Xi and X′i = Xi × Xi.

(2) If (Pi(x,y))pi(x,y) is a WPH-convex subspace of (Xi;σNi) for every i ∈ Ω and every (x, y) ∈ X × X,
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then based on the fact that WPH((Pi(x,y))pi(x,y), (Pi(x,y))pi(x,y)) = (Pi(x,y))pi(x,y), (iii) of Theorem 5.6 can be
replaced by the following condition:

(iii)′ For each (x, y) ∈ Wi = {(x, y) ∈ X × X : (Aix)ci(x)
⋂

(Pi(x,y))pi(x,y) , ∅}, xi < (Pi(x,y))pi(x,y).
(3) Theorem 5.6 generalizes Theorem 4.2 of Al-Homidan and Ansari [33] in the following aspects:

(a) From crisp settings to fuzzy settings; (b) From topological semilattice spaces to WPH-spaces
without any linear and convex structure. In fact, by Lemma 2.1 of Al-Homidan and Ansari [33], we
can see that every topological semilattice space is a WPH-space; (c) (ii) of Theorem 4.2 due to
Al-Homidan and Ansari [33] is dropped; (d) (iii) of Theorem 5.6 is weaker than (iii) of Theorem 4.2
of Al-Homidan and Ansari [33].

(4) Theorem 5.6 improves and extends Theorem 9 of Khanh and Quan [51] in the following
aspects: (a) From crisp settings to fuzzy settings; (b) From KKM-structure with compact Hausdorff
topological spaces to noncompact Hausdorff WPH-spaces. In fact, from Definition 1 of Khanh and
Quan [51], it is easy to see that KKM-structures introduced by Khanh and Quan [51] are special cases
of WPH-spaces; (c) From the games with one constraint set-valued mapping to the generalized fuzzy
games with three constraint set-valued mappings; (d) (iii) of Theorem 5.6 is weaker than (iii) of
Theorem 9 of Khanh and Quan [51]. In addition, it should be pointed out that the proof of Theorem
5.6 is based on the upper semicontinuous selection and collectively fixed point methods, while the
proof of Theorem 9 due to Khanh and Quan [51] is based on systems of variational relation method.

In Theorems 5.3, 5.5 and 5.6, if the fuzzy constrain set-valued mappings are defined by the
characteristic functions and the fuzzy constraint functions are defined by the functions whose values
are constant zero, then we have the following existence theorems of equilibria for the generalized
games and generalized qualitative games in crisp settings. We omit their proofs.

Theorem 5.8. Let Ω be a set of agents (finite or infinite), {(Xi,Zi;σNi)|i ∈ Ω} be a family of Hausdorff
WPH-spaces, and let Γ = (Xi,Zi, Ai, Bi, Fi, Pi)i∈Ω be a generalized game. Let IΠi∈Ω(Xi×Xi) ∈ D̃B(Πi∈Ω(Xi×

Xi),Πi∈Ω(Xi × Xi)), where IΠi∈Ω(Xi×Xi) is the identity mapping on Πi∈Ω(Xi × Xi). For each i ∈ Ω, let
Pi : X × X → 2Xi and F i : X → 2Zi be two set-valued mappings. For each i ∈ Ω, assume that the
following conditions are fulfilled:

(i) For each x ∈ X, Bi(x) is WPH-convex relative to Ai(x);
(ii) For each x ∈ X, Fi(x) is WPH-convex relative to F i(x);
(iii) For each (x, y) ∈ Wi, xi < WPH(Pi(x, y), Pi(x, y)), where

Wi = {(x, y) ∈ X × X : Ai(x)
⋂

Pi(x, y) , ∅};
(iv) There exist two nonempty subsets Z0

i and Z1
i of Zi such that⋃

(ui,vi)∈Zi×Zi

cint{((A−1
i (ui)

⋂
F
−1
i (vi)) × X)

⋂
(P−1

i (ui)
⋃

Wc
i )}

contains
⋂

(ui,vi)∈Z0
i ×Z1

i
[cint{((A−1

i (ui)
⋂

F
−1
i (vi)) × X)

⋂
(P−1

i (ui)
⋃

Wc
i )}]c which is a nonempty compact

subset of X × X or an empty set, and for each Qi,Mi ∈ ⟨Zi⟩, there exist nonempty compact subsets
LQi , LMi of Xi such that LQi×LMi is WPH-convex relative to some Z′i ⊆ Zi×Zi and (Z0

i ×Z1
i )

⋃
(Qi×Mi) ⊆

Z′i .

Then there exists a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω, x̂i ∈ Bi(x̂), ŷi ∈ Fi(x̂) and
Ai(x̂)

⋂
Pi(x̂, ŷ) = ∅.

AIMS Mathematics Volume 7, Issue 8, 13994–14028.



14020

Theorem 5.9. Let Ω be a set of agents (finite or infinite) and {(Xi,Zi;σNi)|i ∈ Ω} be a family of
Hausdorff WPH-spaces. Let Γ = (Xi,Zi, Fi, Pi)i∈Ω be a generalized qualitative game and IΠi∈Ω(Xi×Xi) ∈

D̃B(Πi∈Ω(Xi × Xi),Πi∈Ω(Xi × Xi)), where IΠi∈Ω(Xi×Xi) is the identity mapping on Πi∈Ω(Xi × Xi). For each
i ∈ Ω, let Pi : X × X → 2Xi and F i : X → 2Zi be two set-valued mappings. For each i ∈ Ω, assume that
the following conditions hold:

(i) For each x ∈ X, Fi(x) is WPH-convex relative to F i(x);
(ii) For each (x, y) ∈ Wi, xi < WPH(Pi(x, y), Pi(x, y)), where Wi = {(x, y) ∈ X × X : Pi(x, y) , ∅};
(iii) There exist two nonempty subsets Z0

i and Z1
i of Zi such that⋃

(ui,vi)∈Zi×Zi

cint{(F
−1
i (vi) × X)

⋂
(P−1

i (ui)
⋃

Wc
i )}

contains
⋂

(ui,vi)∈Z0
i ×Z1

i
[cint{(F

−1
i (vi) × X)

⋂
(P−1

i (ui)
⋃

Wc
i )}]c which is a nonempty compact subset of

X × X or an empty set, and for each Qi,Mi ∈ ⟨Zi⟩, there exist nonempty compact subsets LQi , LMi of Xi

such that LQi × LMi is WPH-convex relative to some Z′i ⊆ Zi × Zi and (Z0
i × Z1

i )
⋃

(Qi × Mi) ⊆ Z′i .

Then there exists a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω, ŷi ∈ Fi(x̂) and Pi(x̂, ŷ) = ∅.

Theorem 5.10. LetΩ be a set of agents (finite or infinite) and {(Xi;σNi)|i ∈ Ω} be a family of Hausdorff
WPH-spaces. Let Γ = (Xi, Ai, Bi, Fi, Pi)i∈Ω be a generalized game and IΠi∈Ω(Xi×Xi) ∈ D̃B(Πi∈Ω(Xi ×

Xi),Πi∈Ω(Xi × Xi)), where IΠi∈Ω(Xi×Xi) is the identity mapping on Πi∈Ω(Xi × Xi). For each i ∈ Ω, assume
that the following conditions hold:

(i) For each x ∈ X, Bi(x) is WPH-convex relative to Ai(x);
(ii) For each x ∈ X, Fi(x) is a nonempty WPH-convex subspace of (Xi;σNi);
(iii) For each (x, y) ∈ Wi, xi < WPH(Pi(x, y), Pi(x, y)), where

Wi = {(x, y) ∈ X × X : Ai(x)
⋂

Pi(x, y) , ∅};
(iv) There exist two nonempty subsets X0

i and X1
i of Xi such that⋃

(ui,vi)∈Xi×Xi

cint{((A−1
i (ui)

⋂
F−1

i (vi)) × X)
⋂

(P−1
i (ui)

⋃
Wc

i )}

contains
⋂

(ui,vi)∈X0
i ×X1

i
[cint{((A−1

i (ui)
⋂

F−1
i (vi)) × X)

⋂
(P−1

i (ui)
⋃

Wc
i )}]c which is a nonempty compact

subset of X × X or an empty set, and for each Qi,Mi ∈ ⟨Xi⟩, there exist nonempty compact subsets
LQi , LMi of Xi such that LQi×LMi is WPH-convex relative to some X′i ⊆ Xi×Xi and (X0

i ×X1
i )

⋃
(Qi×Mi) ⊆

X′i .

Then there exists a point (x̂, ŷ) ∈ X × X such that for each i ∈ Ω, x̂i ∈ Bi(x̂), ŷi ∈ Fi(x̂) and
Ai(x̂)

⋂
Pi(x̂, ŷ) = ∅.

In Theorem 5.10, when Pi(x, y) = Pi(x) and Fi(x) ≡ Xi for every i ∈ Ω and every (x, y) ∈ X × X, we
can easily obtain the following existence theorem of equilibria for generalized games in the framework
of noncompact WPH-spaces.

Theorem 5.11. LetΩ be a set of agents (finite or infinite) and {(Xi;σNi)|i ∈ Ω} be a family of Hausdorff
WPH-spaces. Let X =

∏
i∈Ω Xi, Γ = (Xi, Ai, Bi, Pi)i∈Ω be a generalized game, and IX ∈ B̃(X, X), where

IX is the identity mapping on X. For each i ∈ Ω, assume that the following conditions hold:
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(i) For each x ∈ X, Bi(x) is WPH-convex relative to Ai(x);
(ii) For each x ∈ Wi, xi < WPH(Pi(x), Pi(x)), where Wi = {x ∈ X : Ai(x)

⋂
Pi(x) , ∅};

(iii) There exists a nonempty subset X0
i of Xi such that⋃

ui∈Xi

cint{A−1
i (ui)

⋂
(P−1

i (ui)
⋃

Wc
i )}

contains
⋂

ui∈X0
i
[cint{A−1

i (ui)
⋂

(P−1
i (ui)

⋃
Wc

i )}]c which is a nonempty compact subset of X or an empty
set, and for each Qi ∈ ⟨Xi⟩, there exists a nonempty compact subset LQi of Xi, which is WPH-convex
relative to some X′i ⊆ Xi such that X0

i
⋃

Qi ⊆ X′i .

Then there exists a point x̂ ∈ X such that for each i ∈ Ω, x̂i ∈ Bi(x̂) and Ai(x̂)
⋂

Pi(x̂) = ∅.

Remark 5.12. (1) The proof of Theorem 5.11 is similar to that of Theorem 5.3 in crisp settings.
Since hypothesis that (Xi × Xi;σπl(Ñi) × σπr(Ñi)) is a WPH-space for every i ∈ Ω is not needed in the
proof process of theorem 5.11, it follows that this hypothesis, together with the hypothesis that σNi has
nonempty compact values for every i ∈ Ω, does not appear in Theorem 5.11.

(2) Theorem 5.11 extends and generalizes Corollary 4.1 of Al-Homidan and Ansari [33] to WPH-
spaces. Theorem 5.11 is also an improved variant of Corollary 5.1 of Lin et al. [48], Theorem 2 of
Ansari and Yao [46], and Theorem 4.1 of Tarafdar [42] in noncompact WPH-spaces.

If Ai(x) = Bi(x) = Xi for every i ∈ Ω and every x ∈ X, then by Theorem 5.11, we have the following
corollary.

Corollary 5.13. LetΩ be a set of agents (finite or infinite) and {(Xi;σNi)|i ∈ Ω} be a family of Hausdorff
WPH-spaces. Let X =

∏
i∈Ω Xi, Γ = (Xi, Pi)i∈Ω be a qualitative game, and IX ∈ B̃(X, X), where IX is the

identity mapping on X. For each i ∈ Ω, assume that the following conditions hold:

(i) For each x ∈ Wi, xi < WPH(Pi(x), Pi(x)), where Wi = {x ∈ X : Pi(x) , ∅};
(ii) There exists a nonempty subset X0

i of Xi such that⋃
ui∈Xi

cint(P−1
i (ui)

⋃
Wc

i )

contains
⋂

ui∈X0
i
[cint(P−1

i (ui)
⋃

Wc
i )]c which is a nonempty compact subset of X or an empty set, and for

each Qi ∈ ⟨Xi⟩, there exists a nonempty compact subset LQi of Xi, which is WPH-convex relative to
some X′i ⊆ Xi such that X0

i
⋃

Qi ⊆ X′i .

Then there exists a point x̂ ∈ X such that for each i ∈ Ω, Pi(x̂) = ∅.

Example 5.14. We are in position to apply Corollary 5.13 to the equilibrium analysis of water
allocation problems characterized by multiobjective non-cooperative games. Suppose that there are n
water users (n ≥ 2) that can draw water from a common water body for domestic and agricultural
needs. For each i ∈ {1, 2, . . . , n}, let us denote (qi, ri) the combination of quantities collected by the ith
water user, which corresponds to two different uses, where (qi, ri) ∈ [0, ki] × [0, li] = S i ⊆ R

2 and
ki, li > 0. In fact, from here we can consider S i to be the strategy space of the ith water user, and (qi, ri)
can be seen as a strategy in that strategy space.

The payoff function for each water user is a two-dimensional vector-valued function, where the
first component corresponds to the amount of water for domestic needs and represents improvements
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in health and agricultural production. We may assume that the first part of the vector-valued payoff
function for every water user i is expressed as biqi − ci(

∑n
i=1 qi +

∑n
i=1 ri), where biqi represents the

benefit of water user i, which is proportional to bi with bi > 0; ci(
∑n

i=1 qi +
∑n

i=1 ri) is the cost function
of water user i. The second part of the vector-valued payoff function for every water user i is the
market profit, which is proportional to the total water quantity qi + ri and to the inverse demand
function D(

∑n
i=1 qi +

∑n
i=1 ri). Considering a marginal cost function that is the same for every water

user i and is denoted by m, the vector-valued payoff function for every water user i is:

fi((q1, r1), (q2, r2), . . . , (qi, ri), . . . , (qn, rn)) =
(

biqi − ci(
∑n

i=1 qi +
∑n

i=1 ri)
(qi + ri)(D(

∑n
i=1 qi +

∑n
i=1 ri) − m)

)
.

Before introducing the equilibrium concepts of the multiobjective water resource allocation game
model as above, we need several notation for later use. For each i ∈ {1, 2, . . . , n}, we denote S î :=∏

j,i S j. If (q, r) = ((q1, r1), (q2, r2), . . . , (qi, ri), . . . , (qn, rn)) ∈ S , then we write

(q̂i, r̂i) := ((q1, r1), . . . , (qi−1, ri−1), (qi+1, ri+1), . . . , (qn, rn)) ∈ S î

for every i ∈ {1, 2, . . . , n}. If (qi, ri) ∈ S i, (zi, pi) ∈ S i and (q̂i, r̂i) ∈ S î, then we use the following
notation:

((q̂i, r̂i), (qi, ri)) := ((q1, r1), (q2, r2), . . . , (qi, ri), . . . , (qn, rn)) = (q, r) ∈ S

and
((q̂i, r̂i), (zi, pi)) := ((q1, r1), . . . , (qi−1, ri−1), (zi, pi), (qi+1, ri+1), . . . , (qn, rn)) ∈ S .

We denote by R2
+ := {x := (x1, x2) ∈ R2 : x1, x2 ≥ 0}. For each u, v ∈ R2, u · v denotes the standard

Euclidian inner product.
Now, we introduce the concepts of equilibrium for the above multi-objective game model. A

strategy n-tuple (q∗, r∗) = ((q∗1, r
∗
1), (q∗2, r

∗
2), . . . , (q∗n, r

∗
n)) ∈ S is said to be a Pareto equilibrium of this

game model if for every water user i ∈ {1, 2, . . . , n}, there is no strategy (qi, ri) ∈ S i such that(
bi(qi − q∗i ) + ci(

∑n
i=1 q∗i +

∑n
i=1 r∗i ) − ci(

∑
j,i q∗j +

∑
j,i r∗j + qi + ri)

m(q∗i − qi + r∗i − ri) + (qi + ri)D(
∑

j,i q∗j +
∑

j,i r∗j + qi + ri) − (q∗i + r∗i )D(
∑n

i=1 q∗i +
∑n

i=1 r∗i )

)
= fi((q∗î , r

∗

î
), (qi, ri)) − fi(q∗, r∗) ∈ R2

+ \ {0}.

For each i ∈ {1, 2, . . . , n}, let ωi =

(
αi

βi

)
be a weight vector with αi + βi = 1 and αi, βi > 0, the

components of which correspond to the components of the i-th water user’s vector-valued payoff
function fi, respectively. A strategy n-tuple (q∗, r∗) = ((q∗1, r

∗
1), (q∗2, r

∗
2), . . . , (q∗n, r

∗
n)) ∈ S is called a

normal weight Nash equilibrium with respect to weight vector ω = (ω1, ω2, . . . , ωn) if for each water
user i and each (qi, ri) ∈ S i, we have the following:

ωi · fi(q∗, r∗) = αi[biq∗i − ci(
n∑

i=1

q∗i +
n∑

i=1

r∗i )] + βi(q∗i + r∗i )(D(
n∑

i=1

q∗i +
n∑

i=1

r∗i ) − m)

≥ αi[biqi − ci(
∑
j,i

q∗j +
∑
j,i

r∗j + qi + ri)] + βi(qi + ri)(D(
∑
j,i

q∗j +
∑
j,i

r∗j + qi + ri) − m)
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= ωi · fi((q∗î , r
∗

î
), (qi, ri)),

where · denotes the inner product in R2.
We give the following assumptions:
Assumption 1: For each i ∈ {1, 2, . . . , n} and each (q, r) = ((q̂i, r̂i), (qi, ri)) ∈ S , the set of points

(zi, pi) ∈ S i satisfying the following condition is a convex subset of S i:

ωi · fi(q, r) = αi[biqi − ci(
n∑

i=1

qi +

n∑
i=1

ri)] + βi(qi + ri)(D(
n∑

i=1

qi +

n∑
i=1

ri) − m)

< αi[bizi − ci(
∑
j,i

q j +
∑
j,i

r j + zi + pi)] + βi(zi + pi)(D(
∑
j,i

q j +
∑
j,i

r j + zi + pi) − m)

= ωi · fi((q̂i, r̂i), (zi, pi)).

Assumption 2: For each i ∈ {1, 2, . . . , n} and each (q, r) = ((q̂i, r̂i), (qi, ri)) ∈ S , there exist a point
(zi, pi) ∈ S i and an open neighborhood U((q, r)) ⊆ R2 such that for every (g, h) = ((ĝi, ĥi), (gi, hi)) ∈
U((q, r))

⋂
S , there is no (zi, pi) ∈ S i such that

ωi · fi(g, h) = αi[bigi − ci(
n∑

i=1

gi +

n∑
i=1

hi)] + βi(gi + hi)(D(
n∑

i=1

gi +

n∑
i=1

hi) − m)

< αi[bizi − ci(
∑
j,i

g j +
∑
j,i

h j + zi + pi)] + βi(zi + pi)(D(
∑
j,i

g j +
∑
j,i

h j + zi + pi) − m)

= ωi · fi((ĝi, ĥi), (zi, pi))

or there exists (zi, pi) ∈ S i such that the above inequality holds.
Assumption 1 states that for any water user i ∈ {1, 2, . . . , n} and any strategy combination (q, r),

judging from the weighted combination of water user i’s vector-valued payoff function, the set of
his/her strategy that strictly deviates from the strategy combination ((q̂i, r̂i), (qi, ri)) is a convex subset
of S i. Assumption 2 means that for each water user i ∈ {1, 2, . . . , n} and each strategy combination
((q̂i, r̂i), (qi, ri)), there exists a relatively open neighborhood of ((q̂i, r̂i), (qi, ri)) such that for every point
in this neighborhood, according to the judgment standard after the weighted combination of water user
i’s vector-valued payoff function, either there is no deviation strategy, or there is at least one deviation
strategy.

We are ready to verify the conclusion that the multiobjective water resource allocation game model
mentioned above has a Pareto equilibrium if Assumptions 1 and 2 are fulfilled. For each i ∈ {1, 2, . . . , n}
and each Ni = {(qi0 , ri0), (qi1 , ri1), . . . , (qini

, rini
)} ∈ ⟨S i⟩, we define a continuous mapping

σNi : ∆ni → co(Ni) ⊆ S i

by σNi(
∑ni

j=0 ti jei j) =
∑ni

j=0 ti j(qi j , ri j) for every (ti0 , ti1 , . . . , tini
) =

∑ni
j=0 ti jei j ∈ ∆ni . Clearly, one can see

that (S i;σNi) forms a special case of WPH-space for every i ∈ {1, 2, . . . , n}. For each i ∈ {1, 2, . . . , n}
and each Ni = {(qi0 , ri0), (qi1 , ri1), . . . , (qini

, rini
)} ∈ ⟨S i⟩, there is a continuous mapping

σNi : ∆ni → co(Ni) ⊆ S i as defined above. Let C =
∏n

i=1 ∆ni . For each i ∈ {1, 2, . . . , n}, let Vi be be the
linear hull of the set {ei0 , ei1 , . . . , eini

}. Then for every i ∈ {1, 2, . . . , n}, by the finite dimensionality of
Vi, it is a Hausdorff locally convex topological vector space. Thus, V =

∏n
i=1 Vi is also a Hausdorff
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locally convex topological vector space and C is a compact convex subset of V . Let IS be the identity
mapping on S . For each i ∈ {1, 2, . . . , n}, each Ni = {(qi0 , ri0), (qi1 , ri1), . . . , (qini

, rini
)} ∈ ⟨S i⟩, and each

continuous mapping Ψ : IS (
∏

i∈Ω σNi(∆ni)) → C. Define a continuous mapping Φ : C → S by
Φ(ξ) =

∏n
i=1 σNi(πi(ξ)) for every ξ ∈ C, where πi is the projection of C onto ∆ni . Then it follows from

the Tychonof fixed point theorem that the continuous mapping Ψ ◦ IS |
∏

i∈Ω σNi (∆ni ) ◦ Φ : C → C has a
fixed point, which implies that IS ∈ B̃(S , S ). For each i ∈ {1, 2, . . . , n}, we define the i-th water user’s
deviation set-valued mapping Θi : S → 2S i by

Θi(q, r) = {(zi, pi) ∈ S i : ωi · fi((q̂i, r̂i), (qi, ri)) < ωi · fi((q̂i, r̂i), (zi, pi))}

for every (q, r) = ((q̂i, r̂i), (qi, ri)) ∈ S . Then by Assumption 1, we can see that the set Θi(q, r) is
a convex subset of S i for every i ∈ {1, 2, . . . , n} and every (q, r) = ((q̂i, r̂i), (qi, ri)) ∈ S . For each
(q, r) = ((q̂i, r̂i), (qi, ri)) ∈ S , each i ∈ {1, 2, . . . , n}, each Ni = {(qi0 , ri0), (qi1 , ri1), . . . , (qini

, rini
)} ∈ ⟨S i⟩,

and each ((q j0 , r j0), (q j1 , r j1), . . . , (q jki
, r jki

)) ⊆ Ni
⋂
Θi(q, r), we have

σNi(∆ki) = co({(q j0 , r j0), (q j1 , r j1), . . . , (q jki
, r jki

)})
⊆ co(Θi(q, r))
⊆ Θi(q, r).

This shows that Θi(q, r) is a WPH-convex subspace of (S i;σNi). Therefore, we
have(qi, ri) < Θi(q, r) = WPH(Θi(q, r),Θi(q, r)) for every (q, r) = ((q̂i, r̂i), (qi, ri)) ∈ S and thus, (i) of
Corollary 5.13 holds. Finally, we check that (ii) of Corollary 5.13 is satisfied. In fact, it follows from
Assumption 2 that S =

⋃
(zi,pi)∈S i

int(Θ−1
i ((zi, pi))

⋃
Wc

i ) =
⋃

(zi,pi)∈S i
cint(Θ−1

i ((zi, pi))
⋃

Wc
i ) for every

i ∈ {1, 2, . . . , n}, where Wi = {(q, r) ∈ S : Θi(q, r) , ∅}. For each i ∈ {1, 2, . . . , n} and each Qi ∈ ⟨S i⟩, let
LQi = S i = S ′i = S 0

i and then, we can see that S 0
i
⋃

Qi ⊆ S ′i and LQi is WPH-convex relative to some
S ′i ⊆ S i. It is obvious that

⋂
(zi,pi)∈S 0

i
[cint(Θ−1

i ((zi, pi))
⋃

Wc
i )]c ⊆ S =

⋃
(zi,pi)∈S i

cint(Θ−1
i ((zi, pi))

⋃
Wc

i ).
If

⋂
(zi,pi)∈S 0

i
[cint(Θ−1

i ((zi, pi))
⋃

Wc
i )]c , ∅, then it is a nonempty compact subset of S by the fact that it

is a compactly closed subset of the compact set S . If
⋂

(zi,pi)∈S 0
i
[cint(Θ−1

i ((zi, pi))
⋃

Wc
i )]c = ∅, then (ii)

of Corollary 5.13 holds automatically. So far, we have verified that all the hypotheses of
Corollary 5.13 are fulfilled. Thus, it follows from Corollary 5.13 that there exists a strategy n-tuple
(q∗, r∗) = ((q∗1, r

∗
1), (q∗2, r

∗
2), . . . , (q∗n, r

∗
n)) ∈ S such that for each i ∈ {1, 2, . . . , n}, Θi(q∗, r∗) = ∅, which

implies that for each water user i and each (qi, ri) ∈ S i,

ωi · fi(q∗, r∗) = αi[biq∗i − ci(
n∑

i=1

q∗i +
n∑

i=1

r∗i )] + βi(q∗i + r∗i )(D(
n∑

i=1

q∗i +
n∑

i=1

r∗i ) − m)

≥ αi[biqi − ci(
∑
j,i

q∗j +
∑
j,i

r∗j + qi + ri)] + βi(qi + ri)(D(
∑
j,i

q∗j +
∑
j,i

r∗j + qi + ri) − m)

= ωi · fi((q∗î , r
∗

î
), (qi, ri)),

that is, (q∗, r∗) = ((q∗1, r
∗
1), (q∗2, r

∗
2), . . . , (q∗n, r

∗
n)) ∈ S is a normal weight Nash equilibrium with respect

to weight vector ω = (ω1, ω2, . . . , ωn). Further, by using a method similar to that used to prove
Lemma 5.1 due to Lu et al. [54], we can show that (q∗, r∗) = ((q∗1, r

∗
1), (q∗2, r

∗
2), . . . , (q∗n, r

∗
n)) ∈ S is a

Pareto equilibrium of the multiobjective water resource allocation game model. We omit the proof.
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6. Conclusions

A WPH-space is characterized by the existence of an upper semicontinuous set-valued mapping
from a simplex to a topological space, which is established through the medium of finite subsets of a
nonempty set. Since the applications of selection theorems in crisp settings and in the framework of
Hausdorff topological vector spaces are narrow, in order to eliminate the limitations and extend the
applications of selection theorems, we prove an upper semicontinuous selection theorem for fuzzy
mappings in WPH-spaces without linear structure. The validity of the upper semicontinuous selection
theorem for fuzzy mappings is illustrated by an example. Furthermore, by using our upper
semicontinuous selection results, we establish fuzzy collective coincidence point theorems, fuzzy
collectively fixed point theorems, and existence theorems of equilibria for the generalized fuzzy
games with three constraint set-valued mappings and generalized fuzzy qualitative games in
noncompact WPH-spaces. In our opinions, future theoretical research should be focused on applying
the upper semicontinuous selection theorems for fuzzy mappings to deal with the existence of
solutions to systems of generalized fuzzy vector quasi-equilibrium problems, while in terms of
practical applied research, the concepts of generalized fuzzy games and generalized fuzzy qualitative
games can be applied to the model of socio-economic systems with coordination and hence, our
existence results of equilibria for generalized fuzzy games and generalized fuzzy qualitative games
can be useful tools for analyzing general equilibrium models of economic institutions, which contain
most known types of institutions, for example, trade market, bilateral exchanges, supply chains, etc.,
as special cases.
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