Research article

Inference of stress-strength reliability based on adaptive progressive type-Ⅱ censing from Chen distribution with application to carbon fiber data

  • Received: 14 March 2024 Revised: 01 June 2024 Accepted: 12 June 2024 Published: 24 June 2024
  • MSC : 62F10, 62F15, 62N02

  • In this paper, we used the maximum likelihood estimation (MLE) and the Bayes methods to perform estimation procedures for the reliability of stress-strength $ R = P(Y < X) $ based on independent adaptive progressive censored samples that were taken from the Chen distribution. An approximate confidence interval of $ R $ was constructed using a variety of classical techniques, such as the normal approximation of the MLE, the normal approximation of the log-transformed MLE, and the percentile bootstrap (Boot-p) procedure. Additionally, the asymptotic distribution theory and delta approach were used to generate the approximate confidence interval. Further, the Bayesian estimation of $ R $ was obtained based on the balanced loss function, which came in two versions here, the symmetric balanced squared error (BSE) loss function and the asymmetric balanced linear exponential (BLINEX) loss function. When estimating $ R $ using the Bayesian approach, all the unknown parameters of the Chen distribution were assumed to be independently distributed and to have informative gamma priors. Additionally, a mixture of Gibbs sampling algorithm and Metropolis-Hastings algorithm was used to compute the Bayes estimate of $ R $ and the associated highest posterior density credible interval. In the end, simulation research was used to assess the general overall performance of the proposed estimators and a real dataset was provided to exemplify the theoretical results.

    Citation: Essam A. Ahmed, Laila A. Al-Essa. Inference of stress-strength reliability based on adaptive progressive type-Ⅱ censing from Chen distribution with application to carbon fiber data[J]. AIMS Mathematics, 2024, 9(8): 20482-20515. doi: 10.3934/math.2024996

    Related Papers:

  • In this paper, we used the maximum likelihood estimation (MLE) and the Bayes methods to perform estimation procedures for the reliability of stress-strength $ R = P(Y < X) $ based on independent adaptive progressive censored samples that were taken from the Chen distribution. An approximate confidence interval of $ R $ was constructed using a variety of classical techniques, such as the normal approximation of the MLE, the normal approximation of the log-transformed MLE, and the percentile bootstrap (Boot-p) procedure. Additionally, the asymptotic distribution theory and delta approach were used to generate the approximate confidence interval. Further, the Bayesian estimation of $ R $ was obtained based on the balanced loss function, which came in two versions here, the symmetric balanced squared error (BSE) loss function and the asymmetric balanced linear exponential (BLINEX) loss function. When estimating $ R $ using the Bayesian approach, all the unknown parameters of the Chen distribution were assumed to be independently distributed and to have informative gamma priors. Additionally, a mixture of Gibbs sampling algorithm and Metropolis-Hastings algorithm was used to compute the Bayes estimate of $ R $ and the associated highest posterior density credible interval. In the end, simulation research was used to assess the general overall performance of the proposed estimators and a real dataset was provided to exemplify the theoretical results.



    加载中


    [1] Z. W. Birnbaum, R. C. McCarty, A distribution-free upper confidence bound for $Pr (Y < X)$ based on independent samples of $x$ and $y$, Ann. Math. Stat., 29 (1958), 558–562.
    [2] S. Kotz, M. Lumelskii, M. Pensky, The stress-strength model and its generalizations, World Scientific, 2003. https://doi.org/10.1142/5015
    [3] M. E. Ghitany, D. K. Al-Mutairi, S. M Aboukhamseen, Estimation of the reliability of a stress-strength system from power Lindley distributions, Commun. Stat., 44 (2015), 118–136. https://doi.org/10.1080/03610918.2013.767910 doi: 10.1080/03610918.2013.767910
    [4] A. Asgharzadeh, R. Valiollahi, M. Z. Raqab, Estimation of $Pr (Y < X)$ for the two-parameter generalized exponential records, Commun. Stat., 46 (2017), 371–394. https://doi.org/10.1080/03610918.2014.964046 doi: 10.1080/03610918.2014.964046
    [5] B. X. Wang, Y. Geng, J. X. Zhou, Inference for the generalized exponential stress-strength model, Appl. Math. Model., 53 (2018), 267–275. https://doi.org/10.1016/j.apm.2017.09.012 doi: 10.1016/j.apm.2017.09.012
    [6] T. Kayal, Y. M. Tripathi, S. Dey, S. J. Wu, On estimating the reliability in a multicomponent stress-strength model based on Chen distribution, Commun. Stat., 49 (2020), 2429–2447. https://doi.org/10.1080/03610926.2019.1576886 doi: 10.1080/03610926.2019.1576886
    [7] J. G. Ma, L. Wang, Y. M. Tripathi, M. K. Rastogi, Reliability inference for stress-strength model based on inverted exponential Rayleigh distribution under progressive type-Ⅱ censored data, Commun. Stat., 52 (2023), 2388–2407. https://doi.org/10.1080/03610918.2021.1908552 doi: 10.1080/03610918.2021.1908552
    [8] V. Agiwal, Bayesian estimation of stress strength reliability from inverse Chen distribution with application on failure time data, Ann. Data Sci., 10 (2023), 317–347. https://doi.org/10.1007/s40745-020-00313-w doi: 10.1007/s40745-020-00313-w
    [9] A. M. Sarhan, H. T. Ahlam, Stress-strength reliability under partially accelerated life testing using Weibull model, Sci. Afr., 20 (2023), e01733. https://doi.org/10.1016/j.sciaf.2023.e01733 doi: 10.1016/j.sciaf.2023.e01733
    [10] J. E. Contreras-Reyes, D. I. Gallardo, O. Kharazmi, Time-dependent residual Fisher information and distance for some special continuous distributions, Commun. Stat., 2022. https://doi.org/10.1080/03610918.2022.2146136
    [11] H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressive censoring scheme, Naval Res. Log., 56 (2009), 687–698. https://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
    [12] M. A. Almuqrin, M. M. Salah, E. A. Ahmed, Statistical inference for competing risks model with adaptive progressively type-Ⅱ censored gompertz life data using industrial and medical applications, Mathematic, 10 (2022), 4274. https://doi.org/10.3390/math10224274 doi: 10.3390/math10224274
    [13] L. A. Al-Essa, A. A. Soliman, G. A. Abd-Elmougod, H. M. Alshanbari, Adaptive type-Ⅱ hybrid progressive censoring samples for statistical inference of comparative inverse Weibull distributions, Axioms, 12 (2023), 973. https://doi.org/10.3390/axioms12100973 doi: 10.3390/axioms12100973
    [14] S. Dutta, S. Dey, S. Kayal, Bayesian survival analysis of logistic exponential distribution for adaptive progressive type-Ⅱ censored data, Comput. Stat., 39 (2024), 2109–2155. https://doi.org/10.1007/s00180-023-01376-y doi: 10.1007/s00180-023-01376-y
    [15] Q. Lv, Y. Tian, W. Gui, Statistical inference for Gompertz distribution under adaptive type-Ⅱ progressive hybrid censoring, J. Appl. Stat., 51 (2024), 451–480. https://doi.org/10.1080/02664763.2022.2136147 doi: 10.1080/02664763.2022.2136147
    [16] M. Xie, C. D. Lai, Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf., 52 (1996), 87–93. https://doi.org/10.1016/0951-8320(95)00149-2 doi: 10.1016/0951-8320(95)00149-2
    [17] L. Wang, S. Dey, Y. M. Tripathi, S. J. Wu, Reliability inference for a multicomponent stress-strength model based on Kumaraswamy distribution, J. Comput. Appl. Math., 376 (2020), 112823. https://doi.org/10.1016/j.cam.2020.112823 doi: 10.1016/j.cam.2020.112823
    [18] M. Xie, Y. Tang, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf., 76 (2002), 279–285. https://doi.org/10.1016/S0951-8320(02)00022-4 doi: 10.1016/S0951-8320(02)00022-4
    [19] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. Probab. Lett., 49 (2000), 155–161. https://doi.org/10.1016/S0167-7152(00)00044-4 doi: 10.1016/S0167-7152(00)00044-4
    [20] S. J. Wu, Estimation of the two-parameter bathtub-shaped lifetime distribution with progressive censoring, J. Appl. Stat., 35 (2008), 1139–1150. https://doi.org/10.1080/02664760802264996 doi: 10.1080/02664760802264996
    [21] M. K. Rastogi, Y. M. Tripathi, S. J. Wu, Estimating the parameters of a bathtub-shaped distribution under progressive type-Ⅱ censoring, J. Appl. Stat., 39 (2018), 2389–2411. https://doi.org/10.1080/02664763.2012.710899 doi: 10.1080/02664763.2012.710899
    [22] T. Kayal, Y. M. Tripathi, D. P. Singh, M. K. Rastogi, Estimation and prediction for Chen distribution with bathtub shape under progressive censoring, J. Stat. Comput. Simul., 87 (2017), 348–366. https://doi.org/10.1080/00949655.2016.1209199 doi: 10.1080/00949655.2016.1209199
    [23] E. A. Ahmed, Z. A. Alhussain, M. M. Salah, H. H. Ahmed, M. S. Eliwa, Inference of progressively type-Ⅱ censored competing risks data from Chen distribution with an application, J. Appl. Stat., 47 (2020), 2492–2524. https://doi.org/10.1080/02664763.2020.1815670 doi: 10.1080/02664763.2020.1815670
    [24] A. M. Sarhan, B. Smith, D. C. Hamilton, Estimation of P $(Y < X)$ for a two-parameter bathtub shaped failure rate distribution, Int. J. Stat. Probab., 4 (2015), 33–45. http://doi.org/10.5539/ijsp.v4n2p33 doi: 10.5539/ijsp.v4n2p33
    [25] B. Tarvirdizade, M. Ahmadpour, Estimation of the stress-strength reliability for the two-parameter bathtub-shaped lifetime distribution based on upper record values, Stat. Methodol., 31 (2016), 58–72. https://doi.org/10.1016/j.stamet.2016.01.005 doi: 10.1016/j.stamet.2016.01.005
    [26] M. Z. Raqab, O. M. Bdair, F. M. Al-Aboud, Inference for the two-parameter bathtub-shaped distribution based on record data, Metrika, 81 (2018), 229–253. https://doi.org/10.1007/s00184-017-0641-0 doi: 10.1007/s00184-017-0641-0
    [27] S. Shoaee, E. Khorram, Stress-strength reliability of a two-parameter bathtub-shaped lifetime distribution based on progressively censored samples, Commun. Stat., 44 (2015), 5306–5328. https://doi.org/10.1080/03610926.2013.821485 doi: 10.1080/03610926.2013.821485
    [28] L. Wang, K. Wu, Y. M. Tripathi, C. Lodhi, Reliability analysis of multicomponent stress-strength reliability from a bathtub-shaped distribution, J. Appl. Stat., 49 (2022), 122–142. https://doi.org/10.1080/02664763.2020.1803808 doi: 10.1080/02664763.2020.1803808
    [29] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, CRC press, 1994.
    [30] D. Kundu, R. D. Gupta, Estimation of P $(y < x)$ for weibull distributions, IEEE Trans. Reliab., 55 (2006), 270–280. https://doi.org/10.1109/TR.2006.874918 doi: 10.1109/TR.2006.874918
    [31] H. R. Varian, A Bayesian approach to real estate assessment, North-Holland, 1975,195–208.
    [32] R. Calabria, G. Pulcini, Point estimation under asymmetric loss functions for left-truncated exponential samples, Commun. Stat. Theory Meth., 25 (1996), 585–600. https://doi.org/10.1080/03610929608831715 doi: 10.1080/03610929608831715
    [33] M. J. Jozani, É. Marchand, A. Parsian, Bayesian and robust Bayesian analysis under a general class of balanced loss functions, Stat. Pap., 53 (2012), 51–60. https://doi.org/10.1007/s00362-010-0307-8 doi: 10.1007/s00362-010-0307-8
    [34] J. Ahmadi, M. J. Jozani, E. Marchand, A. Parsian, Bayes estimation based on k-record data from a general class of distributions under balanced type loss functions, J. Stat. Plan. Infer., 139 (2009), 1180–11897. https://doi.org/10.1016/j.jspi.2008.07.008 doi: 10.1016/j.jspi.2008.07.008
    [35] A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions, In: S. S. Gupta, J. O. Burger, Statistical decision theory and related topics, Springer, 1994. https://doi.org/10.1007/978-1-4612-2618-5_28
    [36] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. https://doi.org/10.1093/biomet/57.1.97 doi: 10.1093/biomet/57.1.97
    [37] C. P. Robert, G. Casella, Monte Carlo statistical methods, Springer, 2004. https://doi.org/10.1007/978-1-4757-4145-2
    [38] G. Casella, E. I. George, Explaining the Gibbs sampler, Amer. Stat., 46 (1992), 167–74. https://doi.org/10.1080/00031305.1992.10475878
    [39] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92. https://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802
    [40] M. Bader, A. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, In: T. K. Hayashi, S. Umekawa, Progress in science and engineering composites, ICCM-IV, 1982.
    [41] Ç. Çetinkaya, A. I. Genç, Stress-strength reliability estimation under the standard two-sided power distribution, Appl. Math. Modell., 65 (2019), 72–88. https://doi.org/10.1016/j.apm.2018.08.008 doi: 10.1016/j.apm.2018.08.008
    [42] M. R. Sheldon, Simulation, Academic Press, 2012.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(631) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog