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1. Introduction

Modern industrial systems are frequently created with exacting criteria of quality. There are many
different methods used to improve system reliability. A redundant structure is a method for further
developing system reliability. For instance, a cloud storage server typically has a minimum of one
backup to assist users in protecting sensitive data. In the same vein, a commercial aircraft is equipped
with a backup engine for use in the event of unexpected malfunctions. In many industrial products,
such as production systems, pump systems, power generation systems, etc., the reliability of systems
is impacted by a number of factors when they are added to be used within the actual environment,
including operating environments, outdoor shocks, operators, and so on. One way to look at these
factors is as stresses the system experiences while it is operating. In such situations, the stress-strength
(S-S) model is normally used to evaluate the parallel machine’s reliability. The S-S version, first
offered through Birnbaum and McCarty [1], is one of the most widely used reliability fashions. For
this model, it fails if its stress exceeds its strength. Therefore, device reliability can be described as
the probability that the device’s strength exceeds its stress. That is expressed mathematically in the
form R = P(Y < X), where X stands for the stress variable and Y for the system’s strength. Numerous
statistical issues, including those involving quality control, engineering, clinical, and biostatistics, have
found use for the S-S model. In the context of medical research, for instance, the variable R quantifies
the efficacy of a novel treatment in relation to its control; in this case, X and Y stand for the new
treatment’s and the control’s respective effects. Similar to this, in engineering studies, R stands for
the likelihood that a system component’s strength (Y) will exceed the system’s external stress (X).
An overview of all the techniques and consequences related to the S-S version is provided by Kotz
et al. [2].

Evaluating the reliability of the S-S model using different statistical techniques has been the focus
of a lot of research lately. For example, Ghitany et al. [3] presented point and interval estimates of
the reliability of the S-S model under a Lindley power distribution. They used maximum likelihood
estimators (MLEs) as well as parametric and nonparametric bootstrapping techniques. Using recorded
samples from two parameter generalized exponential distribution, Asgharzadeh et al. [4] estimated the
S-S model P(Y < X). The process of establishing a generalized inference on the S-S model based on
the unknown parameters of the generalized exponential distribution was carried out by Wang et al [5].
With the growing interest in this system and the importance of Chen distribution, which has become
evident in the past two decades, in order to obtain point and interval estimates for a multicomponent
R of an S -out-of- j system, Kayal et al. [6] used classical and Bayesian methods under the assumption
that both the S-S variables follow a Chen distribution with a common shape parameter. The reliability
estimation of R when the failure times are progressively Type-II censored and both the latent strength
and stress variables originate from the inverse exponential Rayleigh distribution was discussed by Ma
et al. [7]. Moreover, Agiwal [8] developed a Bayesian estimation method to estimate R where X and
Y are inverse Chen random variables. Recently, Sarhan and Ahlam [9] have given attention to the
estimation of R for step-stress partial acceleration life testing, when the stress and strength additives
are independent random variables generated from Weibull distributions with specific shape and scale
parameters.

To gather information about the lifetime and reliability characteristics of products
(Contreras-Reyes et al. [10]), various units are typically used during life testing experiments. In
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actuality, it is sometimes not possible to finish experiments until all failures are noted due to time and
financial constraints. To increase test efficiency in this regard, several censoring schemes and testing
techniques are suggested. In practice, the most commonly used methods in the literature are type I
and type II control. According to these methods, life tests terminate or stop after a specified time or a
specified number of failures, respectively. Through various life testing experiments, there are many
different challenges that experimenters face in order to be able to control the testing time as well as
keep the experimental units intact, so stopping the experiment before all experimental units fail is one
of the solutions to achieve these goals. This is done through the use of control structures that rely on
deferring some active devices from the experiment. The progressive censoring system is considered
one of the experimental designs commonly used in recent years, as through this system, survival units
are arbitrarily removed from the test at any stage of the test. As a result, it is more adaptable and
efficient than conventional censoring techniques. Over time, numerous models of progressive
censorship have been discussed. According to this model, censoring has been divided into two parts:
When the experiment ends after a specific time, this section is called progressive censoring of the first
type, while the second part is progressive censoring of the second type, and in this section the
experiment stops after a predetermined number of failures appear. Through both sections,
experimenters will be able to freely remove test units during the experiment at nonterminal times.
Whithin a type-II progressive censoring scheme, to test the life of units, the experimenter puts n units
through the test at time zero, and only m units that fail completely are observed. With the primary
failure, which may take the shape X1, R1 is randomly eliminated from the final devices within the test.
At the time of the second failure X2, the experimenter selects a random number of final units, let it be
R2, and they are removed from the experiment. Finally, in the same sequence, at the time of the mth
failure, Xm the experimenter removes all remaining units Rm from the experiment, where

Rm = n − m −
m−1∑
i=1

Ri.

When test units are highly reliable, the long testing time represents one of the main drawbacks of
the progressive type-II censoring model. For this reason, Ng et al. [11] suggested an improved model
(see Figure 1) that allows for adjustments to the censoring scheme throughout the experiment.

Figure 1. Illustration of an adaptive type-II progressive censoring scheme.

This improved model is known in the literature as the adaptive type-II progressive censoring model.
The technique of this model can be explained as follows:
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(1) First, the effective sample size m, the number of units to be tested n, the progressive censoring
scheme (R1,R2, ...,Rm), and the time point T must be determined in advance before the beginning of
the experiment.

(2) As indicated by the preceding progressive censoring strategy, R1 units are arbitrarily eliminated
from the test at the moment of the first failure X1:m:n. R2 units are also arbitrarily removed from the test
at the moment of the second failure, X2:m:n, and so on.

(3) When the mth failure occurs before time T (i.e., Xm:m:m < T ), the test ends at this point with the
unchanged progressive censoring scheme

R1,R2, ...,Rm = n − m −
m∑

i=1

Ri,

and we will have the standard progressive type-II censoring.
(4) In the event where XJ:m:n < T < XJ+1:m:n, where J < m and XJ:m:n is the Jth failure time to occur

before the time T , no surviving item will be removed from the test by placing

RJ+1 = RJ+2 = ... = Rm−1 = 0,

and at the time Xm:m:n, all remaining units R∗m are removed, where

R∗m = n − m −
J∑

i=1

Ri.

Because of this, the progressive censoring scheme that is being used in this instance is

(R1,R2, ...,RJ, 0, 0, ..., 0, n − m −
J∑

i=1
Ri).

(5) After running the previously specified test, we may get the following adaptive progressive type-
II censored observation data

(X1:m:n,R1), (X2:m:n,R2), ..., (Xm:m:n,Rm) if Xm:m:n < T,Rm = n − m −
m∑

i=1
Ri,

(X1:m:n,R1), ..., (XJ:m:n,RJ), (XJ+1:m:n, 0), ..., (Xm:m:n,R∗m) if XJ:m:n < T < XJ+1:m:n, J < m.

For more details on recent developments using the adaptive type-II progressive censoring, one may
refer to Almuqrin et al. [12], Al-Essa et al. [13], Dutta et al. [14], and Lv et al. [15].

Many scientific and engineering applications use a variety of distributions, including gamma,
exponential, Rayleigh, normal, Weibull, and others, to model the lifetime characteristic of products.
Among the various probabilistic models, bathtub-shaped failure rate distributions have drawn a lot of
attention. These models are highly helpful for studying complex systems or subsystems and for
making decisions, particularly when the target product’s entire life cycle needs to be modeled.
Regarding this, numerous authors have proposed and discussed in literature a variety of probability
models featuring bathtub-shaped failure rate functions. The bathtub-shaped hazard function offers a
suitable conceptual model for the lifespan of humans as well as certain mechanical and electronic
products. Xie and Lai [16], Wang et al. [17], and Xie et al. [18] are only a few of the writers whose
articles contain references to the earlier comprehensive work on parametric probability distributions
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with bathtub-shaped failure rate function. The Chen distribution is considered one of the most
important distributions that contain bathtub curves.

Chen [19] introduced a distribution that is often called the Chen or bathtub-shaped distribution with
two parameters in the literature. It is a significant probability model that is frequently applied to lifetime
analysis. This probability model is truly crucial for studying physical events for which the hazard rate
function predicts bathtub-shaped behavior. It gives complex systems whose failure rates vary over
time a flexible way to be modeled. One of the primary features of the Chen distribution is its bathtub-
shaped failure rate curve, which has three unique phases (decreasing, constant, and ascending) and may
be used to describe a wide range of systems. This curve has a wide range of potential applications,
including researching the efficacy of medications or therapies across various age groups. It can be
helpful when analyzing mortality data as well. When modeling the reliability of items or systems that
are prone to wear and tear, one might employ the Chen distribution. For the Chen distribution, these
are the probability density function (PDF) and cumulative density function (CDF):

f (x;α, β) = αβxβ−1 exp
[
xβ + α

(
1 − exβ

)]
, x > 0, α > 0, β > 0 (1)

and
F(x;α, β)=1 − exp

[
α
(
1 − exβ

)]
, x > 0, α > 0, β > 0. (2)

Here, both α and β are known as shape parameters. The Chen distribution’s hazard rate function (HRF)
is presented in the manner shown below:

H(x;α, β)=αβxβ−1 exp
[
xβ

]
, x > 0. (3)

The Chen distribution’s HRF (3) has a bathtub form with a minimum at (1−β
β

)1/β, when β < 1. It
increases when β ≥ 1. This distribution may be used to describe many kinds of failure-time data
quite well since it is fairly adaptable. For example, if we select β = 1 in (1), this distribution further
transforms into a Gompertz distribution with parameters 1 and α. When α = 1, the exponential power
distribution results. If x ∼Ch(α, β) and we take

Y = ( exβ − 1)1/θ,

the distribution turns into a Weibull distribution with parameters α and θ.
Some important characteristics of the Chen distribution distinguish it from other two-parameter

models: The hazard rate function has a bathtub shape, and the joint confidence regions and shape
parameter confidence intervals are closed-form. As a result, researchers have paid close attention
to this distribution in recent years due to its broad applicability in simulating a variety of real-life
phenomena. For a brief review, using progressive type-II censoring, Wu [20] calculated the MLEs of
the unknown parameters and approximated their intervals. Rastogi et al. [21] achieved the Bayesian
inference of this distribution against various symmetric and asymmetric loss functions. Using data that
was progressively censored, Kayal et al. [22] looked at the Bayesian one and two sample prediction.
Ahmed et al. [23] observed the Chen distribution for a competitive risk model with progressive type-II
censored data.

Here, we derive the expression of the S-S reliability coeficient defined by

R = P (Y < X)
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when the independent random variables X and Y follow the Chen distributions Ch(α1, β) and
Ch(α2, β), respectively. Since Chen’s distribution contains two shape parameters, we will assume that
for both X and Y , the second shape parameter, β, is the same. Two reasons of this condition are (i) the
reliability parameter cannot be obtained explicitly when the two shape parameters are different; (ii)
the condition β1 , β2 increases the complexity of the likelihood function under adaptive progressive
censored samples. After a linear integral is expanded, we obtain

R = P (Y ≤ X) =
∫ ∞

−∞

fX (x) FY (x) dx

=

∫ ∞

0
α1βxβ−1exβeα1

(
1−exβ

) [
1 − eα2

(
1−exβ

)]
dx

= 1 − α1

∫ ∞

0
βxβ−1exβe(α1+α2)

(
1−exβ

)
dx

=
α2

α1 + α2
. (4)

It is important to note from Eq (4) that the S-S reliability parameter R is in a closed form, and it is a
function of α1 and α2. Also, as the strength parameter α1 increases, R decreases for the fixed values of
the stress parameter α2. Since R is independent of the common shape parameter β, utilizing Eq (4) to
derive R is an easy task. This is only possible if the values of the parameters α1 and α2 are known or
can be calculated using various estimation techniques.

It is worth noting that the evaluation depends on whether this probability (R = P (Y < X)) is less
than or greater than 0.5. The result is evaluated and interpreted as follows:

(1) The lifetime of the two products or any two units is equal if R = 0.5.
(2) If R > 0.5, the lifetime of Unit/Product 1 exceeds that of Unit/Product. For example, if R = 0.7,

Unit/Product 1 is better than Unit/Product 2 with a probability of 70%.
(3) If R < 0.5, the lifetime of Unit/Product 2 exceeds that of Unit/Product 1. For example, if

R = 0.20, Unit/Product 2 is better than Unit/Product 1 with an 80% probability.
We discover several examples of efforts that have been done in the literature to estimate the R

parameter when the variables follow the Chen distribution: Sarhan et al. [24] used the maximum
likelihood and Bayes procedures to determine the reliability R in the case of two independent r.v.s., X
and Y , using a two-parameter Chen distribution. Based on upper record values, Tarvirdizade and
Ahmadpour [25] and Raqab et al. [26] have investigated the calculation of the S-S reliability for the
two-parameter Chen model. Shoaee and Khorram [27] examined the S-S reliability of this lifetime
distribution using type-II progressively censored data. According to Wang et al. [28], a
multicomponent system is reliable when its strength and stress follow Chen distribution.

Although the inference procedures of S-S models under complete samples have been well-studied
in the literature, the issue of censored data, specifically, adaptive type-II progressive censored data
has received less attention. In this work, we study the problem of estimating the S-S parameter R
where X and Y are independent Chen random variables with distinct shape parameters, using adaptive
progressive type-II censored samples. Our problem is motivated by the fact that adaptive progressive
type-II censored samples have some additional advantages in life testing experiments. Where in this
censoring scheme, we can ensure the final effective sample size, and that the experiment will end as
soon as possible. The main contributions are:
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(1) To derive the MLE of R.
(2) To derive the Bayes estimators of R based on different general loss functions.
(3) To examine R’s statistical inference using the delta approach.
(4) We perform numerical simulations to assess the accuracy of Bayesian and frequentist

procedures.
(5) In order to show how the suggested inferences may be applied by analyzing actual datasets.
The following describes the paper’s methodology: First, we’ll estimate R using the ML technique.

Next we will discuss the asymptotic confidence interval of R. The delta approach is used to estimate
the variance of the R estimator in order to achieve the required confidence interval. Second, the
balanced loss function is taken into account in order to compute Bayesian estimates of R, with special
attention paid to the balanced square error loss function (BSEL) and the balanced exponential loss
function (BLINEX). In the last ten years, the Markov chain Monte Carlo (MCMC) technique has
become a popular solution to the Bayesian approach to deal with the problem of many integrals
arising in the posterior distribution. Using this technique, we calculate the Bayes estimates and
credible intervals for R. A comprehensive numerical comparison of the presented estimates with
respect to means squared errors, coverage probabilities, and confidence lengths is carried out.

The structure of the paper is as follows after this introduction. In Section 2, we give the expression
for R of Chen distribution. The MLE of R and the associated approximate confidence interval as will
as boot-p confidence interval are also discussed. In Section 3, we derive the Bayesian estimate R and
the its credible interval using the Gibbs technique within Metropolis-Hastings (MH). In Section 4, we
present an examination of an actual dataset. In Section 5, we do a Monte Carlo simulation analysis to
compare the suggested values of R. In Section 6, we finally bring the article to a close.

2. MLE of R

Suppose
X = (X1:m1:n1 , X2:m1:n1 , ..., Xm1:m1:n1)

is an adaptive type-II progressive censored sample from Ch(α1, β) with the scheme
{m1, n1,T1,R1,R2, ...,Rm1} such that

XJ1:m1:n1 < T1 < XJ1+1:m1:n1 .

Additionally,
Y =

(
Y1:m2:n2 ,Y2:m2:n2 , ...,Ym2:m2:n2

)
is an adaptive type-II progressive censored sample from Ch(α2, β) under the scheme
{m2, n2,T2, S 1, S 2, ..., S m2} such that

YJ2:m2:n2 < T2 < YJ2+1:m2:n2 .

For
Θ = (α1, α2, β) ,
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according to the two independent random samples X and Y , the likelihood function (LF) is provided
by

L (Θ|data) =

CJ1

m1∏
i=1

f (xi)
J1∏

i=1

[
F̄ (xi)

]Ri
[
F̄

(
xm1

)]R∗m1


CJ2

m2∏
j=1

f
(
y j

) J2∏
j=1

[
F̄

(
y j

)]S i
[
F̄

(
ym2

)]S ∗m2

 , (5)

where

CJ1 =

m1∏
i=1

(m1 − i + 1 −
min{i−1,J1}∑

k=1

Rk, ), CJ2 =

m2∏
j=1

(m2 − j + 1 −
min{ j−1,J2}∑

l=1

S l

and

R∗m = n1 − m1 −

J1∑
i=1

Ri, S ∗m = n2 − m2 −

J2∑
j=1

S j, F̄ (·) = 1 − F (·) .

Wu [20] provides the LF (5) for R in the progressive censored sample case, which is produced in the
situation T1 = T2 = ∞. Moreover, the LF for R in the complete sample is reached when T1 = T2 = ∞

and Ri = S i = 0, as reported by Sarhan et al. [24]. The following may be used to represent the LF for
the observed sample data, X and Y , using Eqs (1), (2), and (5):

L(Θ|data) =CJ1CJ2α
m1
1 α

m2
2 β

m1+m2 exp
{
α1R∗m1

(1 − exβm1 ) + α2S ∗m2
(1 − eyβm2 )

} m1∏
i=1

xβ−1
i

m2∏
j=1

yβ−1
j

× exp

 m1∑
i=1

[
xβi + α1(1 − exβi )

]
+

m2∑
j=1

[
yβj + α2(1 − eyβj )

]
× exp

α1

J1∑
i=1

Ri(1 − exβi ) + α2

J2∑
j=1

S j(1 − eyβj )

 . (6)

Ignoring the additive constants CJ1and CJ2 , the log-LF, say,

L = L (α1, α2, β) = log L(Θ|data)

is given by:

L =m1 log(α1) + m2 log(α2) + (m1 + m2) log(β) + (β − 1)

 m1∑
i=1

log (xi) +
m2∑
j=1

log
(
y j

)
+

m1∑
i=1

[
xβi + α1(1 − exβi )

]
+

m2∑
j=1

[
yβj + α2(1 − eyβj )

]
+

J1∑
i=1

α1

[
Ri(1 − exβi ) + R∗m1

(1 − exβm1 )
]
+

J2∑
j=1

α2

[
S j(1 − eyβj ) + S ∗m2

(1 − eyβm2 )
]
. (7)

The first order derivatives of the log-LF, with respect to α1, α2 and β are

∂L

∂α1
=

m1

α1
+

m1∑
i=1

(1 − exβi ) +
J1∑

i=1

Ri(1 − exβi ) + R∗m1
(1 − exβm1 ) = 0, (8)
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∂L

∂α2
=

m2

α2
+

m2∑
j=1

(1 − eyβj ) +
J2∑
j=1

S j(1 − eyβj ) + S ∗m2
(1 − eyβm2 ) = 0, (9)

and
∂L

∂β
=

(m1 + m2)
β

+

m1∑
i=1

log (xi) +
m2∑
j=1

log
(
y j

)
+

m1∑
i=1

xβi log (xi) (1 − α1exβi ) − α1

 J1∑
i=1

Rix
β
i log (xi) exβi + xβm1

log
(
xm1

)
R∗m1

exβm1


+

m2∑
j=1

yβj log
(
y j

)
(1 − α2eyβj ) − α2

 J2∑
j=1

S jy
β
j log

(
y j

)
eyβj + yβm2

log
(
ym2

)
S ∗m2

eyβm2


= 0.

(10)

From (8) and (9), we obtain

α̂1 (β) =
m1

U (X, β)
, α̂2 (β) =

m2

V (Y, β)
, (11)

where,

U(X, β) =
m1∑
i=1

(exβi − 1) +
J1∑

i=1

Ri(exβi − 1) + R∗m1
(exβm1 − 1) (12)

and

V(Y, β) =
m2∑
j=1

(eyβj − 1) +
J2∑
j=1

S j(e
yβj − 1) + S ∗m2

(eyβm2 − 1). (13)

In the case that the parameter β is known, the MLE of α1 and α2 can be obtained directly from the
Eq (11). However, when the all parameters are unknown, the parameter β will be estimated by
maximizing the profile log-likelihood function L(α̂1 (β) , α̂2 (β) , β), with respect to β by solving the
following nonlinear equation:

∂L

∂β
=

(m1 + m2)
β

+

 m1∑
i=1

log (xi) +
m2∑
j=1

log
(
y j

) + m1∑
i=1

xβi log (xi)

1 − m1exβi

U(X, β)


+

m2∑
j=1

yβj log (yi)

1 − m2eyβj

V(Y, β)

 − m1W(X, β)
U(X, β)

−
m2Z(Y, β)

V(Y, β)
= 0, (14)

where

W(X, β) =

 J1∑
i=1

Rix
β
i log (xi) exβi + xβm1

log
(
xm1

)
R∗m1

exβm1

 (15)

and

Z(Y, β) =

 J2∑
j=1

S jy
β
j log

(
y j

)
eyβj + yβm2

log
(
ym2

)
S ∗m2

eyβm2

 . (16)

The nonlinear Eq (14) has a fixed point solution at β̂, which may be found by using the following
straightforward iterative method:

h (β) = β, (17)
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where,

h (β) =
− (m1 + m2)∑m1

i=1 log (xi) [1 + xβi (1 − m1exβi

U(X,β) )] +
∑m2

j=1 log
(
y j

)
[1 + yβj(1 −

m2e
yβj

V(Y,β) )] −
m1W(X,β)

U(X,β) −
m2Z(Y,β)

V(Y,β)

. (18)

Since β̂ is the fixed point solution of Eq (17), it may be derived by applying an iterative approach as
follows:

h
(
β(k)

)
= β(k+1),

where β(k) denotes the kth iterate value of β̂. Once |β(k) − β(k+1)| is little enough, the iteration process
should end. In the real data application, we use the fixed point method to obtain the MLE of unknown
parameter β. This technique’s starting value is established by drawing the two functions z = β and
z = h (β) and observing their intersection, where z = h (β)is defined in Eq (18).

Using β̂, we can now apply Eq (11) to obtain α̂1 and α̂2 as α̂1(β̂) and α̂2(β̂), respectively. Thus, the
MLE of R under the common parameter situation may be derived from Eq (4) using the invariance
property as

R̂ML =
α̂2(β̂)

α̂1(β̂) + α̂2(β̂)
= m2

[
m2 + m1

V(Y, β̂)
U(X, β̂)

]−1

= m2

m2 + m1

∑m2
j=1(eyβ̂j − 1) +

∑J2
j=1 S j(e

yβ̂j − 1) + S ∗m2
(eyβ̂m2 − 1)∑m1

i=1(exβ̂i − 1) +
∑J1

i=1 Ri(exβ̂i − 1) + R∗m1
(exβ̂m1 − 1)


−1

. (19)

2.1. Approximate confidence interval estimation of R

In this section, we construct asymptotic confidence interval (ACI) of R using the asymptotic
distribution of MLE R. The Fisher information matrix of

Θ = (α1, α2, β)

is
J(Θ) = E(I(Θ))

where
I(Θ) = Ii j(Θ)

for i, j = 1, 2, 3, is the observed information matrix defined by

I(Θ) = −



∂2L

∂α2
1

∂2L

∂α1∂α2

∂2L

∂α1∂β
∂2L

α2∂α1

∂2L

∂α2
2

∂2L

α2∂β
∂2L

∂β∂α1

∂2L

∂β∂α2

∂2L

∂β2


= −


I11 I12 I13

I21 I22 I23

I31 I32 I33

 . (20)

From the log-LF (7), we have the second derivatives of L with respect to α1, α2, and β, which are
illustrated in the following:

I11 = −
m1

α2
1

, I12 = I21 = 0, I22 = −
m2

α2
2

,
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I13 = I31 = −

m1∑
i=1

xβi exβi log (xi) −
J1∑

i=1

Rix
β
i exβi log (xi) − R∗m1

xβm1
exβm1 log

(
xm1

)
,

I23 = I32 = −

m2∑
j=1

yβje
yβj log

(
y j

)
−

J2∑
j=1

S jy
β
je

yβj log
(
y j

)
− S ∗m2

yβm2
eyβm2 log (ym2)

and

I22 = −
(m1 + m2)
β

−

m1∑
i=1

xβi log2(xi){α1exβi (1 + xβi ) − 1} −
m2∑
j=1

yβi log2(yi){α2eyβi (1 + yβi ) − 1}

− α1

 J1∑
i=1

Rix
β
i log2(xi)exβi (1 + xβi ) + R∗m1

xβm1
log2(xm1)e

xβm1 (1 + xβm1
)


− α2

 J2∑
j=1

S jy
β
j log2

(
y j

)
eyβj (1 + yβj) + S ∗m2

yβm2
log2 (

ym2

)
eyβm2 (1 + yβm2

)

 .
The expectations of the entries of the observed information matrix cannot be obtained analytically.
Therefore, the Fisher information matrix

J(Θ) = E(I(Θ))

can be obtained by using numerical methods.

Theorem 1. When n→ ∞, one has

√
n
(
Θ̂ − Θ

) d
→ N(0, nI−1(Θ̂)),

where I−1(Θ̂) is the inverse of Fisher information matrix I(Θ), given by

I−1(Θ̂) =


I11 I12 I13

I21 I22 I23

I31 I32 I33


−1

(α1,α2,β)=(α̂1,α̂2,β̂)

=


Var(α̂1) Cov(α̂1, α̂2) Cov(α̂1, β̂)

Cov(α̂2, α̂1) Var(α̂2) Cov(α̂2, β̂)
Cov(β̂, α̂1) Cov(β̂, α̂2) Varβ̂)

 . (21)

Proof. The multivariate central limit theorem and the asymptotic condition of MLE may be used to
show the outcome. □

Theorem 2. When n→ ∞, one has
√

n
(
R̂ − R

) d
→ N(0, nVar(R)), where

Var(R) =
[
(∇R)T I−1(Θ) (∇R)

]
and (∇R)T =

(
∂R
∂α1
,
∂R
∂α2
,
∂R
∂β

)T

, (22)

where,
∂R
∂α1
=

−α2

(α1 + α2)2 ,
∂R
∂α1
=

−α1

(α1 + α2)2 and
∂R
∂β
= 0. (23)

Proof. Wang et al. [28] provides the complete proof of this theorem. □
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We would like to point out here that all the theories and their proofs for the asymptotic normality
of the obtained estimators are included in [28]. As an immediate consequence, substituting Θ by its
MLE, Θ̂, and for arbitrary 0 < γ < 1, a two-sided 100(1 − γ)% ACI of R is given by(

R̂ML − z γ
2

√
V̂ar(R̂ML), R̂ML + z γ

2

√
V̂ar(R̂ML)

)
, (24)

where z γ
2

is the upper γ2 th quantile of the standard normal distribution,

V̂ar(R̂ML) =
[(
∇R̂ML

)T
V̂ar(Θ̂)

(
∇R̂ML

)]
,

(
∇R̂ML

)T
=

(
∂R
∂α1
,
∂R
∂α2
,
∂R
∂β

)T ∣∣∣∣∣∣
Θ=Θ̂

,

and
V̂ar(Θ̂) = I−1(Θ̂).

The ACI derived in Eq (24) can have a negative bottom bound in some circumstances. To overcome
this issue, Wang et al. [17], for instance, explained how to use the logarithmic transformation and delta
techniques to obtain the asymptotic normality distribution of ln R̂ML, where,

(ln R̂ML − ln R)√
V̂ar(ln R̂ML)

d
→ N (0, 1) . (25)

With this in mind, a 100(1 − γ)% ACI of R obtained can be constructed as
R̂ML

exp
(
z γ

2

√
V̂ar(ln R̂ML)

) , R̂ML exp
(
z γ

2

√
V̂ar(ln R̂ML)

) , (26)

where
V̂ar(ln R̂ML) = σ̂2

R/R̂ML.

2.2. Bootstrap confidence interval of R

Based on the asymptotic results, it is evident that a small sample size decreases the confidence
interval’s performance. For this, we use the percentile parametric bootstrap technique to generate a
confidence interval; see Efron and Tibshirani [29] for further details. The following process illustrates
how to find R’s percentile Boot-p confidence interval.

Step 1. The initial values are established for the following: α1, α2, β, m1, m2, n1, n2, T1, T2, and
progressive censoring schemes (R1,R2, ...,Rm1) and (S 1, S 2, ..., S m2).

Step 2. Using the previous initial inputs, independent samples (x1:m1:n1 , x2:m1:n1 , ..., xm1:m1:n1) and
(y1:m2:n2 , y2:m2:n2 , ..., ym2:m2:n2) are generated from Ch(α1, β) and Ch(α2, β), respectively. The
procedures listed below are used to create the adaptive progressively type II censored datasets
from Chen lifetime (see to Kundu and Gupta [30]).
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i) From a typical uniform distribution U(0, 1), generate m1 independent and identical
observations W1,W2, ...,Wm1 of size m1.

ii) Establish
Vi = W

1/(i+Rm1+...+Rm1−i+1)
i

for i = 1, ...,m1.
iii) For each i = 1, 2, ...,m1, evaluate

Zi = 1 − Vm1Vm1−1...Vm1−i+1.

Thus, the progressive Type-II censored sample {Z1,Z2, ...,Zm1} originates from the U(0, 1)
distribution.

iv) To compute the sample data from Ch(α1, β) of the progressive type-II censoring scheme,
given the starting values of α1 and β, one may set

Xi =

(
log

[
1 −

1
α1

log (1 − Zi)
]) 1
β

,

where i = 1, 2, ...,m1.
v) Determine the value of J1, which satisfies XJ1:m1:n1 < T1 < XJ1+1:m1:n1 , and remove the sample

XJ1+2:m1:n1 , ..., Xm1:m1:n1 .

vi) Using the truncated distribution f (x,α1,β)
1−F(xJ1+1:m1:n1 ) , get the first m1 − J − 1 order statistics

(XJ1+2:m1:n1 , ..., Xm1:m1:n1), where the sample size is n1 − m1 − 1 −
∑J1

i=1 Ri.

vii) Using steps i-vi, we generate two adaptive progressive type-II censoring data (x1, x2, ..., xm1)
and (y1, y2, ..., ym2) from Ch(α1, β), Ch(α2, β), respectively.

Step 3. The generated data is used to calculate the MLEs for α1, α2, β, and then using Eq (19), the
MLE for R is estimated.

Step 4. Bootstrap samples from Ch(α̂1, β̂) and Ch(α̂2, β̂) were created using the preceding stages.
These samples may be expressed as (x∗1, x

∗
2, ..., x

∗
m1

) and (y∗1, y
∗
2, ..., y

∗
m2

).

Step 5. With the bootstrap samples provided, calculate bootstrap estimates α̂∗1, α̂∗2, and β̂.
Subsequently, compute the bootstrap estimate of R, say R∗.

Step 6. Steps 3 and 4 can be repeated B times to provide B numbers of R’s bootstrap estimators, let it
be R∗(b), b = 1, 2, ..., B.

Step 7. After the preceding step, the bootstrap estimates of R need to be ordered as follows:
R∗[1], R∗[2], ..., R∗[B].

Step 8. For the variable R, the two-sided 100(1 − γ)% bootstrap confidence interval is provided[
R∗[Bγ/2]

boot , R∗[B(1−γ/2)]
boot

]
. (27)

3. Bayes estimation of R

The Bayes estimator and associated credible interval of R are constructed in this section.
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3.1. Prior and posterior distributions

Because of its simplicity and ease of computation, the gamma prior is taken into consideration for
the parameter in a variety of lifetime models as an informative prior. It is a distribution with a peak
close to zero and a tail that extends to infinity. This means that we can actually simplify the solution
to the posterior distribution. Consequently, it is believed that we have separate gamma priors for the
unknown parameters α1, α2, and β. Mathematically, the independent prior distributions will take the
following forms:

π1 (α1) =
1
Γ (a1)

αa1−1
1 exp (−b1α1) , α1 > 0, a1 > 0, b1 > 0, (28)

π2 (α2) =
1
Γ (a2)

αa2−1
2 exp (−b2α2) , α2 > 0, a2 > 0, b2 > 0, (29)

π3 (β) =
1
Γ (β)
βa3−1 exp (−b3β) , β > 0, a3 > 0, b3 > 0. (30)

In this case, the values of a1, b1, a2, b2,a3, and b3 are selected to represent past understandings of α1,
α2, and β. It should be noted that if the hyper-parameters are taken to be zero (a1 = b1 = a2 = b2 =

a3 = b3 = 0), then gamma prior reduces to non-informative form.
The joint prior distribution and the LF L(Θ|data) are used in the Bayesian technique to create the

posterior distribution of any parametric space (Θ). Thus, the following joint posterior density of α1,
α2, and β is derived from Eqs (6) and (28)–(30).

π∗(α1, α2, β|data) =
L(α1, α2, β|data)π1 (α1) π2 (α2) π3 (β)∫ ∞

0

∫ ∞
0

∫ ∞
0

L(α1, α2, β|data)π1 (α1) π2 (α2) π3 (β) dα1α2β

=Aαm1+a1−1
1 αm2+a2−1

2 βm1+m2+a3−1
m1∏
i=1

xβ−1
i

m2∏
j=1

yβ−1
j

× exp
[
−α1 (b1 + U(X, β)) − α2 (b2 + V(Y, β))

]
, (31)

where, U(X, β) and V(Y, β) are given by (12) and (13), respectively. Below is the definition of the

standardizing constant A:

A−1 =

∫ ∞

0

∫ ∞

0

∫ ∞

0
αm1+a1−1

1 αm2+a2−1
2 Ψ(β) exp

[
−α1 (b1 + U(X, β)) − α2 (b2 + V(Y, β))

]
dα1dα2dβ, (32)

where

Ψ(β) = βm1+m2+a3−1
m1∏
i=1

xβ−1
i

m2∏
j=1

yβ−1
j . (33)

In decision theory, defining a loss function is essential to determine the optimal estimator and utilize it
to express the lowest statistical error (risk) connected to each potential estimate. To make the
computations easier, a squared error loss function is used by several writers to generate Bayesian
estimates. However, this loss function’s primary critique is that it gives equal weight to
overestimation and underestimating, which is at odds with real-world practices. In the literature, a
number of asymmetric loss functions have been put out to deal with this situation. We mention the
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linear exponential (LINEX) (Varian [31] and generalized entropy (Calabria and and Pulcini [32]) loss
functions as some of the asymmetric loss functions that are used in the literature.

To calculate the posterior distribution of R, we have the following transformation: α2 = W. Then
from (4), we have

α1 = W (1 − R) /R.

The posterior distribution of R and W can be calculated by the following formula:

π∗(R,W, β|data) = |J| .π(W (1 − R) /R,W, β|data)

= |J| . (W (1 − R) /R)m1+a1−1 (W)m2+a2−1 βm1+m2+a3−1
m1∏
i=1

xβ−1
i

m2∏
j=1

yβ−1
j

exp
[
−W

(b1 + U(X, β)) (1 − R)
R

−W (b2 + V(Y, β))
]
. (34)

In the above formula, J is called Jacobian and is calculated as follows

|J| =

∣∣∣∣∣∣∣∣∣
∂α1

∂W
∂α2

∂W
∂α1

∂ R
∂α2

∂ R

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ (1 − R) / R 1
−W/ R2 0

∣∣∣∣∣∣ = W
R2 . (35)

In the next subsection, we will focus on a more general loss function, which is the balanced loss
function to estimate R via the Bayesian approach. It includes several symmetric and nonsymmetric
loss functions. Both the BLINEX and BSE loss functions may be obtained from it.

3.2. Balanced loss function

A generalized loss function known as the balanced loss function (refer to Jozani et al. [33]) has the
following form:

Lω,δ0
(
Θ̂, δ

)
= ωρ (Θ, δ0) + (1 − ω) ρ (Θ, δ) , (36)

where ρ represents an arbitrary loss function, a previously chosen “target” estimator of Θ is δ0, which
can be determined by the MLE or any other estimator. The weight ω has values in the interval [0, 1).

Selecting
ρ (Θ, δ) = (δ − Θ)2

allowed (36) to be simplified to the BSE loss function, which Ahmadi et al. [34] utilized in the
following form:

Lω,δ0
(
Θ̂, δ

)
= ω (δ − δ0)2 + (1 − ω) (δ − Θ)2 , (37)

and the associated Bayes estimate for the unidentified parameter Θ is provided by

ηω,δ0 (data) = ωδ0 + (1 − ω) E (Θ|data) . (38)

The loss function for BLINEX with shape parameter c (c , 0) may be derived by selecting

ρ (Θ, δ) = ec(δ−Θ)
− c (δ − Θ) − 1;
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c , 0 (Zellner [35]).

L∗ω,δ0
(
Θ̂, δ

)
= ω

[
ec(δ−δ0)

− c (δ − δ0) − 1
]
+ (1 − ω)

[
ec(δ−Θ)

− c (δ − Θ) − 1
]
. (39)

Thus, under the BLINEX loss function, the Bayes estimate of Θ is provided by

η∗ω,δ0 (data) =
−1
c

log
[
ωe−cδ0 + (1 − ω) E

(
e−c R|data

)]
. (40)

Keep in mind that balanced loss functions are more widely applicable; as special cases, they consist of
the MLE and the symmetric and asymmetric Bayes estimates. Equation (38) may be used to get the
MLE for ω = 1, as well as the squared error loss function (symmetric) when ω = 0. Furthermore,
the Bayes estimator under the BLINEX loss function in (40) reduces to MLE when ω = 1, and when
ω = 0, it leads to the LINEX loss function (asymmetric) situation.

Based on the BSE loss function, the Bayes estimator for R may be obtained from (38) by

RBS E = ωRML + (1 − ω) E ( R|data) .

= ωRML + (1 − ω)
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
α2

α1 + α2

)
π∗(α1, α2, β|X,Y)dα1dα2dβ, (41)

and from (40), which yields the Bayes estimator for R under the BLINEX loss function,

RBLINEX =
−1
c

log
[
ωe−cRML + (1 − ω)

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−c( α2

α1+α2
)
π∗(α1, α2, β|data)dα1dα2dβ

]
. (42)

It is well-known that assuming the BSE loss function, the Bayesian estimator of R can be obtained also
from (34) and (38) by

RBS E =ωRML + (1 − ω)

∞∫
0

∞∫
0

RW
R2 π

∗(R,W, β|data)dWdβ

=ωRML + (1 − ω)

∞∫
0

∞∫
0

W
R
π∗(R,W, β|data)dWdβ

=ωRML + (1 − ω) +


∞∫

0

∞∫
0

1
R

(
1 − R

R

)m1+a1−1

Wm2+a2−1Ψ(β)

exp
[
−W (b1 + U(X, β)) (1 − R) /R −W (b2 + V(Y, β))

]
dWdβ

}
. (43)

Additionally, the Bayesian estimator of R under the BLINEX loss function is given as follows:

RBLINEX =
−1
c

log
{
ωe−cRML + (1 − ω) E

(
exp(−cR)|data

)}
=
−1
c

log

ωe−cRML + (1 − ω)

∞∫
0

∞∫
0

We−cR

R2 π
∗(R,W, β|data)dWdβ

 , (44)
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where c , 0, π∗(R,W, β|data) is given by (34).
Since it is often difficult to discover the analytical solution, the Bayes estimators in Eqs (43) and (44)

require many integrations, for which computational and numerical approaches are required to confront
the integrals. Therefore, in the next subsection, the MCMC approach is considered to approximate
these integrations. The MH algorithm (Hastings [36]) will be implemented to compute the Bayes
estimates and credible intervals width of R under BSE and BLINEX loss functions.

3.3. Bayes estimation via MCMC approach

Sampling from the posterior is done directly for complex functions using the MCMC method,
which was suggested by Robert and Casella [37]. Using the preceding value from the specified
function, this creates a chain or sequence of random samples. Thus, sampling methodology is the
foundation of this process in order to compute and encounter the high-dimensional function. The
Gibbs sampler and the MH algorithm are two main techniques utilized in this procedure. The Gibbs
sampler, initially introduced by Casella and George [38], is among the most precisely described
MCMC sampling algorithms. Wherein the conditional posterior distribution, a lower-dimension
functional form is obtained from the high-dimensional parametric model. The Gibbs approach must
decompose the joint posterior distribution into full conditional distributions for each parameter in the
model. Computing Bayesian estimates of Θ, as well as any function of Θ, requires sampling from
each of these conditional distributions.

Specifically, (31) shows that it is not possible to get explicit forms for the marginal posterior
distributions for each parameter. It can be demonstrated that given α2, β, and data, the conditional
density of α1 is given by

π1(α1|α2, β, data) ∝ αm1+a1−1
1 exp

[
−α1 (b1 + U(X, β))

]
. (45)

Given α1, β, and data, the conditional density of α2 is

π2(α2|α1, β, data) ∝ αm2+a2−1
2 exp

[
−α2 (b2 + V(Y, β))

]
, (46)

and, correspondingly, given α1, α2, and data, the conditional density of β is

π3(β|α1, α2, data) =βm1+m2+a3−1 exp
{
−α1R∗m1

exβm1 − α2S ∗m2
eyβm2 )

} m1∏
i=1

xβ−1
i

m2∏
j=1

yβ−1
j

× exp

−b3β +

m1∑
i=1

[
xβi − α1exβi )

]
+

m2∑
j=1

[
yβj − α2eyβj )

]
− α1

J1∑
i=1

Riexβi − α2

J2∑
j=1

S je
yβj )

 .
(47)

Evidently, samples of α1 and α2 using (45) and (46), respectively, are readily produced with any
procedure for producing gamma. Unfortunately, standard techniques cannot sample the conditional
posterior distribution of β (Eq (47)) directly since it cannot be analytically reduced to a known
distribution. A standard alternative that does not require completion and an increase in the dimension
is the MH algorithm. It is more straightforward to use in high dimensions, applicable without an
envelope, and has a normalizing effect compared to other iterative techniques. The major difference
with the Gibbs sampler is that we need to choose the proposal distribution, which can be a priori
anything. In order to get random numbers from (43), here we apply the MH algorithm within Gibbs
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sampler algorithm to compute Bayes estimate as well as credible intervals of R under adaptive
progressive type II censoring. We estimate the marginal posterior density π3(β|α1, α2, data) by using
normal proposal distribution N(β(p−1),Var(β̂)), where Var(β̂) represents the variance of β and β(p−1) is
the current value of β.

The following procedures illustrate how the MH algorithm functions within Gibbs sampling to
simulate posterior samples:

(1) Use the MLEs of (α1, α2, β) as the initial point of the iteration, denoted by (α(0)
1 , α

(0)
2 , β

(0)).
(2) Set p = 1.
(3) Generate α

(p)
1 and α

(p)
2 from Gamma(m1 + a1, bi + U(X, β(p−1))), and

Gamma(m2 + a2, (b2 + V(Y, β(p−1))), respectively, where U(X, β(p−1)) and V(Y, β(p−1)) are given,
respectively by

U(X, β(p−1)) =
m1∑
i=1

(exβ
(p−1)

i − 1) +
J1∑

i=1

Ri(exβ
(p−1)

i − 1) + R∗m1
(exβ

(p−1)
m1 − 1)

and

V(Y, β(p−1)) =
m2∑
j=1

(eyβ
(p−1)

j − 1) +
J2∑
j=1

S j(e
yβ

(p−1)

j − 1) + S ∗m2
(eyβ

(p−1)
m2 − 1).

(4) With a normal proposal distribution, N(β(p−1), Var(β̂)), create β(p) from π(β(p−1)|α
(p)
1 , α

(p)
2 , data)

using the flowing MH:
i) Compute the acceptance probabilities

β∗ = min

1, π(β∗|α(p)
1 , α

(p)
2 , data)

π(β(p−1)|α
(p)
1 , α

(p)
2 , data)

 .
ii) Generate u from uniform distribution.
iii) If u < β∗, accept the proposal and set β(p) = β∗; otherwise, put

β(p) = β(p−1).

(5) Compute the S-S reliability measure

R(p) =
α

(p)
2

α
(p)
1 + α

(p)
2

.

(6) Place p = p + 1.
(7) Go through steps 3–6 N times.

To ensure convergence and eliminate any bias in the initial value selection, the first M simulated
variates are eliminated. Then, for sufficiently big N, the selected sample, R(p), p = M + 1, ...,N creates
an estimated posterior sample that may be utilized to construct the Bayesian inference of R.

Using the BSE loss function provided by (41), the estimated Bayes estimate of R is obtained as
follows:

RBS E = ωRML +
(1 − ω)
N − M

N∑
p=M+1

R(p). (48)
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Also, the approximate Bayes estimate for R, under BLINEX, from (42) is subsequently provided by

RBLINEX =
−1
c

log

ωe−cRML +
(1 − ω)
N − M

N∑
p=M+1

e−cR(p)

 . (49)

Additionally, the approximated/estimated 100(1 − γ)% credible intervals for R are given by(
R[γ/2], R[1−γ/2]

)
, which may be obtained by sorting R(p), p = M + 1, ...,N in ascending orders; see

Chen and Shao [39]. The number in the burn-in phase is M here. In the same way, the Bayes
estimator for R can be found from relations (43) and (44).

The purpose of the next section is to clarify how to apply the previously suggested approaches to
actual occurrences that occur in the real world.

4. Carbon fiber data application

Carbon fiber is composed of strong, thin crystalline carbon strands, which are effectively extended
chains of carbon atoms joined by a bond. Since fibers are light, robust, and extremely durable, they are
employed in several processes to create excellent structural materials. They are currently employed as
steel and plastic substitutes. Therefore, we used actual carbon fiber data from Badr and Priest [40],
which expresses the draw of impregnated carbon fibers at 1000 GPa (gigapascals) and the strength
of single carbon fibers. Single fibers with gauge lengths of 20 mm (dataset I) and 10 mm (dataset
II) underwent tension testing. The appropriate sample sizes are N1 = 69 and N2 = 63, in that order.
After deducting 0.75 from each of the datasets, Kundu and Gupta [30] examined the changed datasets
and fitted the Weibull models to each of them independently. Similarly, Çetinkaya and Genç [41] fit
the power model for each dataset independently after multiplying them by 1/3 and 1/5, respectively.
Then, they used Bayesian and MLE techniques to investigate the R estimation problem. The same data
transformed by [41] will be used here. Tables 1 and 2 present the transformed datasets, respectively,
for gauge lengths of 20 mm and 10 mm.

Table 1. Transformed dataset I (for gauge length of 20 mm) from Çetinkaya and Genç [41].
Gauge length Data
20mm 0.1873 0.4053 0.4913 0.5440 0.6053 0.6733 0.7723 0.1880 0.4157 0.4967 0.5587

0.6067 0.6743 0.7780 0.2430 0.4187 0.5010 0.5613 0.6120 0.6833 0.7800 0.2673
0.4237 0.5067 0.5617 0.6263 0.6863 0.7820 0.3167 0.4257 0.5073 0.5760 0.6277
0.6893 0.7927 0.3510 0.4350 0.5080 0.5800 0.6307 0.6903 0.8277 0.3703 0.4377
0.5170 0.5870 0.6327 0.6993 0.8943 0.3717 0.4493 0.5170 0.5880 0.6447 0.7100
0.9450 0.3980 0.4633 0.5363 0.5950 0.6490 0.7347 0.9450 0.4027 0.4763 0.5440
0.6013 0.6587 0.7540

Table 2. Transformed dataset II (for gauge lengt of 10 mm) from Çetinkaya and Genç [41].
Gauge length Data
10mm 0.2302 0.3408 0.3748 0.444 0.5028 0.5574 0.6950 0.2764 0.3448 0.3818 0.4492

0.5044 0.5608 0.7290 0.2906 0.3536 0.3850 0.4560 0.5088 0.5624 0.8540 0.2956
0.3544 0.3976 0.4750 0.5164 0.5756 0.3014 0.3550 0.3980 0.4778 0.5192 0.6204
0.3200 0.3564 0.4212 0.4790 0.5254 0.6242 0.3222 0.3650 0.4334 0.4940 0.5316
0.6272 0.3292 0.3728 0.4356 0.4946 0.5370 0.6442 0.3294 0.3732 0.4374 0.4970
0.5486 0.6548 0.3390 0.3736 0.4374 0.4986 0.5502 0.6554
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The random variables that produce the strength measurements in dataset I and the stress
measurements in dataset II are represented by X and Y , respectively. We apply the MLE process and
fit the Chen distribution to these complete data sets. To avoid the problem of initial values when using
the Newton-Raphson (N-R) method, we propose to use the fixed point iteration algorithm to obtain an
initial value β from (17). First, we get the MLEs of the unknown parameters using the fixed point
approach. Drawing the two functions,

z = β and z = h(β),

and noting their intersection, where
z = h(β)

is specified in Eq (17), we yield the starting value for this method. Figure 2 displays the results. This
figure indicates that the starting value of β should be around between 3.5 and 4. Our starting
approximation of β is 3.5, and the iterative procedure ends when the difference between two
successive iterations is smaller than 10−5. The Mathematica routines can also be utilized to solve
Eq (17), where the function NMaximize from Mathematica 11 was used to derive the MLEs as
solutions of the likelihood equations. For α1, α2, β, and R, the corresponding MLEs are

α̂1 = 4.47813, α̂2 = 10.378, β = 3.54862, and RML = 0.7274.

Figure 2. The initial value in the fixed point technique for carbon fiber data.

We want to see whether a Chen distribution can be used to fit each dataset independently before
moving forward. According to the one-sample Kolmogorov-Smirnov (K-S) test, the K-S statistic for
X is 0.0619 with a p-value of 0.9541 and for Y is 0.080 with a p-value of 0.8149. Since the p-values
of the K-S test are more than the 5% significance level, it is evident that these data closely follows
the Chen distribution. Figure 3a,c illustrates how well Chen’s density matched the histograms when
we plotted the histograms of the two datasets. Additionally, the quantile-quantile (Q-Q) plots of the
two datasets shown in Figure 3b,d. Using all available datasets, the estimated/empirical CDFs of the
Chen distributions are displayed in Figure 4. The findings show that the fitted distribution functions
for datas 1 and 2 are quite comparable to the corresponding empirical distribution functions.
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(a) (b)

(c) (d)

Figure 3. Datasets I and II histograms with Q-Q graph.

(a) (b)

Figure 4. The fitted distribution functions for datasets I and II as well as the empirical
distribution functions.

Because it demands a simple null hypothesis, the one-sample K-S test is not very helpful in real-
world situations. That is, the distribution must be completely specified with all parameters known.
To get around this issue, a K-S bootstrap test was suggested; for more information, see Sheldon [42].
The p-values are accurately approximated asymptotically using this strategy. In this effort, the fit of
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the Chen distribution to each dataset will be evaluated using this bootstrapped version. The following
stages are included in this method:

Step 1. Estimate the parameters Θ = {θ1, θ2, ..., θk} and construct the theoretical CDF: Fn

(
X, Θ̂

)
,

based on an initial sample for the variable X = {x1, x2, . . . , xn}.
Step 2. Determine

D0 = max1≤i≤n

[∣∣∣∣F̂n (xi) − Fn

(
xi, Θ̂

)∣∣∣∣ , ∣∣∣∣F̂n (xi−1) − Fn

(
xi, Θ̂

)∣∣∣∣] ,
where F̂n (xi) is the empirical CDF.

Step 3. Create fresh samples for X using the estimations from the first step, that is, {x∗1l, x
∗
2l, . . . , x

∗
nl}.

Using these new samples, compute the bootstrap sample estimate of Θ, say,

Θ∗l = {θ
∗
1l, θ

∗
2l, ..., θ

∗
kl}.

Step 4. Step 3 should be repeated B times. A high number of bootstrap samples B is necessary to
guarantee a reliable estimate.

Step 5. Evaluate

D∗l = max1≤i≤n

[∣∣∣∣F̂∗nl

(
x∗i j

)
− F∗nl

(
xil, Θ̂

∗
)∣∣∣∣ , ∣∣∣∣F̂∗n (

x∗(i−1)l

)
− F∗nl

(
x∗il, Θ̂

∗
)∣∣∣∣] .

If D0 > D∗(B(1−γ)+1) for a significance level γ, we reject the null hypothesis. An approximate p-value
can be computed using

p-value =
#
{
D∗l > D0

}
+ 1

B + 1
, l = (1, 2, . . . , B).

where #
{
D∗l > D0

}
denotes the amount of D∗l (l = 1, . . . , B) that exceeded D0.

Using the above algorithm, based on bootstrap samples B = 5000, the K-S distances and the
corresponding p-values are 0.07472(0.7421) and 0.07749(0.3957) for the strength and stress real life
data, respectively. The results also suggest that the Chen distribution fits the transformed dataset well.

Based on the complete carbon fiber data (X,Y), several adaptive type-II progressive censoring
samples are generated with different choices of m1, m2,T1, T2 and censoring schemes R and S .
Table 3 presents these samples. The different estimators for R are computed using the previously
described techniques based on these generated samples. After calculating the MLE of R using the
N-R procedure, we calculate Bayes estimates of R under both BSE and BLINEX loss functions, and
the MH approach. Here, a non-informative prior is employed in the Bayes estimates, where
ai = bi = 0, i = 1, 2, 3 because we lack previous knowledge about the parameters. The values of

(α(0)
1 , α

(0)
2 , β

(0)) = (α̂1, α̂2, β̂)

are initialized when samples from the posterior distribution are created using MH, where, α̂1, α̂2 and β̂
indicate the MLEs of the parameters α1, α2, and β, respectively. From a total of 21, 000 samples
produced by the posterior density, we then remove the first 1000 burn-in samples. Then, as specified
by Eqs (43) and (44), the Bayes estimates of R are obtained using various loss functions, such as BSE
and BLINEX with c = (−5, 0.5, 5) and ω = (0, 0.25, 0.5, 0.95).
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Table 3. The generated censored samples for carbon fiber data.
Scheme Generated data
I Type-II censoring: m1 = 35, m2 = 33, T1 = 1.0, T2 = 1.0, R = (0∗34, 34) and S = (0∗32, 30).

x 0.1873, 0.1880, 0.2430, 0.2673, 0.3167, 0.4053, 0.4157, 0.4187, 0.4237, 0.4257, 0.4913, 0.4967,
0.5010, 0.5067, 0.5073, 0.5440, 0.5587, 0.5613, 0.5617, 0.5760, 0.6053, 0.6067, 0.6120, 0.6263,
0.6277, 0.6733, 0.6743, 0.6833, 0.6863, 0.6893,0.7723, 0.7780, 0.7800, 0.7820, 0.7927

y 0.2302, 0.2764, 0.2906, 0.2956, 0.3014, 0.3200, 0.3222, 0.3292, 0.3294, 0.3390, 0.3408, 0.3448,
0.3536, 0.3544, 0.3550, 0.3564, 0.3650, 0.3728, 0.3732, 0.3736, 0.3748, 0.3818, 0.3850, 0.3976,
0.3980, 0.4212, 0.4334, 0.4356, 0.4374, 0.4374, 0.4454, 0.4492, 0.4560

II Censoring from the start: m1 = 35, m2 = 33, T1 = 1.0, T2 = 1.0, R = (34, 0∗34) and S = (30, 0∗32).
x 0.1873, 0.1880, 0.3167, 0.3703, 0.3717, 0.4053, 0.4157, 0.4187, 0.4257, 0.4377, 0.4633, 0.5010,

0.5067, 0.5073, 0.5080, 0.5170, 0.5440, 0.5440, 0.5587, 0.5613, 0.5617, 0.5760, 0.5880, 0.6053,
0.6277, 0.6307, 0.6447, 0.6490, 0.6587, 0.6863, 0.6903, 0.7780, 0.7820, 0.7927, 0.9450

y 0.2302, 0.2956, 0.3200, 0.3222, 0.3294, 0.3544, 0.3550, 0.3748, 0.3818, 0.4212, 0.4334, 0.4356,
0.4374, 0.4374, 0.4454, 0.4560, 0.4750, 0.4790, 0.4946, 0.4986, 0.5028, 0.5088, 0.5254, 0.5316,
0.5370, 0.5486, 0.5502, 0.5756, 0.6204, 0.6272, 0.6442, 0.6548, 0.695

III Progressive type-II censoring: m1 = 35, m2 = 33, T1 = 1.0, T2 = 1.0, R = (2∗17, 0∗18) and S = (2∗15, 0∗18).
x 0.1873, 0.1880, 0.2430, 0.2673, 0.3167, 0.3510, 0.4027, 0.4053, 0.4157, 0.4377, 0.4493, 0.4633,

0.4763, 0.5073, 0.5080, 0.5170, 0.5613, 0.5617, 0.5760, 0.5800, 0.5950, 0.6013, 0.6053, 0.6263,
0.6733, 0.6743, 0.6893, 0.6903, 0.6993, 0.7100, 0.7347, 0.7723, 0.7780, 0.7800, 0.9450

y 0.2302, 0.2764, 0.2906, 0.2956, 0.3014, 0.3200, 0.3292, 0.3294, 0.3390, 0.3408, 0.3536, 0.3544,
0.3650, 0.3736, 0.3748, 0.3850, 0.3976, 0.4454, 0.4492, 0.4560, 0.4778, 0.4986, 0.5164, 0.5192,
0.5370, 0.5486, 0.5574, 0.6204, 0.6242, 0.6272, 0.6442, 0.6548, 0.7290

IV Adaptive type-II progressive censoring: m1 = 35, m2 = 33, T1 = 0.6, T2 = 0.5, R = (2∗17, 0∗18) and S = (2∗15, 0∗18).
x 0.1873, 0.1880, 0.2430, 0.2673, 0.3167, 0.3510, 0.3703, 0.3717, 0.3980, 0.4027, 0.4053, 0.4237,

0.4257, 0.4350, 0.4633, 0.4967, 0.5010, 0.5073, 0.5080, 0.5613, 0.5760, 0.5870, 0.5880, 0.6013,
0.6067, 0.6120, 0.6307, 0.6587, 0.6833, 0.7100, 0.7723, 0.7780, 0.7820, 0.8277, 0.9450

y 0.2302, 0.2764, 0.2906, 0.2956, 0.3014, 0.3200, 0.3292, 0.3294, 0.3390, 0.3408, 0.3536, 0.3544,
0.3650, 0.3736, 0.3748, 0.3850, 0.3976, 0.4454, 0.4492, 0.4560, 0.4778, 0.4986, 0.5164, 0.5192,
0.5370, 0.5486, 0.5574, 0.6204, 0.6242, 0.6272, 0.6442, 0.6548, 0.7290

The convergence of the chains must be verified in accordance with the Bayesian technique. Thus,
Figure 5a displays the MCMC trace plot with sample mean, and 95% highest posterior density (HPD)
credible interval for R. Also, using the Gaussian kernel, Figure 5b displays the marginal posterior
density estimate of R and its histogram based on samples of size 20000.

(a) MCMC sample trace plot (b) MCMC sample histogram

Figure 5. MCMC histogram with Q-Q graphs and an estimated model density.
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The graphic clearly shows how nearly symmetrical the marginal distribution is. Therefore, these
charts demonstrate how the sample data from the Chen model displays a suitable mixture for the Bayes
estimate. Table 4 shows the estimated outcomes for R based on ML’s approach. Table 4 also shows the
results of Bayes estimates of R with respect to the BSE and BLINEX loss functions, over a range of
values of ω and a variable value of the LINEX parameter c. It is worth mentioning that, for different
schemes, the bootstrap estimate of R and its 95% confidence interval were generated using a bootstrap
sample of size 1000. Furthermore, Table 5 displays the lower and higher lengths of confidence intervals
for R using the normal approximation interval, Log normal confidence interval, Boot p, and Bayes
procedures. A 95% confidence level is used in this process.

Table 4. ML, bootstrap, and Bayes point estimates of R for carbon fiber data.
Scheme (T1,T2,, J1, , J2) MLEs Boot-p BSE BLINEX

ω c = −5 c = 0.5 c = +5
Complete data set (T1 = T2 = 1, J1 = 69, J2 = 63) 0.6986 0.6992 0 0.6963 0.6999 0.6960 0.6927

0.25 0.6969 0.6996 0.6966 0.6941
0.50 0.6974 0.6992 0.6973 0.6956
0.95 0.6985 0.6986 0.6984 0.6983

I (T1 = T2 = 1, J1 = 35, J2 = 33) 0.8774 0.8817 0 0.8683 0.8716 0.8679 0.8647
0.25 0.8706 0.8731 0.8703 0.8678
0.50 0.8728 0.8745 0.8726 0.8709
0.95 0.8769 0.8771 0.8769 0.8767

II (T1 = T2 = 1, J1 = 35, J2 = 33) 0.6909 0.6907 0 0.6848 0.6922 0.6841 0.6770
0.25 0.6864 0.6919 0.6858 0.6804
0.50 0.6879 0.6916 0.6875 0.6838
0.95 0.6906 0.6910 0.6906 0.6902

III (T1 = T2 = 1, J1 = 35, J2 = 33) 0.6986 0.7000 0 0.6961 0.6997 0.6957 0.6924
0.25 0.6967 0.6994 0.6964 0.6939
0.50 0.6973 0.6991 0.6971 0.6954
0.95 0.6984 0.6986 0.6984 0.6983

IV (T1 = 0.7,T2 = 0.5, J1 = 23, J2 = 22) 0.6958 0.6947 0 0.6935 0.7006 0.6927 0.6861
0.25 0.6941 0.6994 0.6935 0.6885
0.50 0.6946 0.6982 0.6943 0.6909
0.95 0.6957 0.6961 0.6957 0.6953

Table 5. Different interval estimates of R for carbon fiber data.
ML Boot-p Bayes

Scheme Aproximate normal CIs Aproximate log-normal CIs
Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length

Complet data set 0.6234 0.7738 0.1504 0.6273 0.778 0.1507 0.6078 0.7931 0.1852 0.6177 0.7673 0.1496
I 0.8080 0.9467 0.1387 0.8107 0.9495 0.1389 0.8304 0.9697 0.1395 0.7825 0.9289 0.1465
II 0.5820 0.7998 0.2178 0.5902 0.8089 0.2187 0.5651 0.8184 0.2533 0.5706 0.7843 0.2137
III 0.6020 0.7951 0.1931 0.6084 0.8021 0.1937 0.6003 0.7930 0.1938 0.6175 0.7672 0.1497
IV 0.5900 0.8016 0.2116 0.5977 0.8101 0.2124 0.5458 0.8161 0.2703 0.582 0.7923 0.2103

Analysis of an earlier real dataset illustrates the significance and use of the adaptive type-II
progressive censoring and the inferential methods based on it. It is demonstrated that the estimate of
the S-S reliability model and the associated varied confidence intervals is highly dependent on the
number of failures and a predefined number of inspection times. The performance of the various
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estimating techniques may also be observed to be rather similar to one another. Table 4’s numerical
findings substantiate our understanding that, for R, all Bayes estimation outcomes under the BSEL
and BLINEX loss functions are equal to the respective MLEs as ω approaches unity. The results also
show that the default estimators within the SE and LINEX loss functions, respectively, are derived
from the default estimators based on both BSEL and BLINEX, when ω = 0. Thus, it is evident to us
how important it is to use balanced loss functions in the Bayes approach. Table 5 indicates that the
Bayes estimator is the best based on the length of the confidence interval. The estimators of
approximate normal and approximate log-normal are next in order of preference, and the bootstrap
estimator is the last one. Additionally, the values of the lengths of the confidence intervals based on
the interval estimators of approximate normal and approximate log-normal exhibit a substantial
convergence.

In summary, the results of point estimates and interval estimates do not change significantly between
different schemes. It is evident that, as predicted in Tables 4 and 5, the estimates produced using
the type-II censored data are nearer to the estimates produced with the complete sample. Although
the adaptive type-II progressive censoring scheme shortens the testing time, the accuracy cannot be
determined from a single sample, therefore for better comparison we will create a simulation study in
the next section.

5. Simulation and comparisons

Numerous simulation tests are conducted to evaluate the accuracy of our estimations using MC
simulations. While the coverage percentage (CR) and interval mean length (IML) are used to evaluate
interval estimation, the mean square error (MSE) and biases are used to evaluate point estimation.
Smaller MSE and closer estimation value indicate better estimation performance for point estimation.
Furthermore, in the context of interval estimation, better estimates are produced with greater coverage
rates and shorter interval mean lengths.

First and foremost, the algorithm (Steps 2 and 3) provided in Subsection 2.2 must be used to
construct adaptive type-II progressive censored data from a Chen distribution (Ch(α1, β), Ch(α2, β)).
It is established that the real values of (α1, α2, β) are (1.5, 2.0, 0.75). To facilitate comparison, we take
into account

T1 = 0.6, T2 = 0.5

and
(N1,m1) = (N2,m2) = (30, 10), (30, 20), (50, 10), (50, 30), (50, 40).

Three separate censoring schemes (CS) are selected for each combination of sample sizes and times
T1 and T2. We simplify the censoring schemes by abbreviating them. For instance, (5∗2, 0∗3) is the
representation of (5, 5, 0, 0, 0). Every scenario involves 1000 iterations of the simulation. Mathematica
software may then be used to do MC simulations in order to obtain the corresponding MSEs and bias
for the point estimate and the related mean lengths and coverage rates for the interval estimation of R.

Based on these repeated samples, the following formulae are used to calculate the estimators’ bias,
MSE, and lower bound:

Bias( R) =
1

1000

1000∑
i=1

∣∣∣ R(i) − R)
∣∣∣
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and

MSE( R) =
1

1000

1000∑
i=1

( R(i) − R)2.

The solutions of likelihood equations for the MLE are found by applying the N-R technique.
Additionally, we calculate the predicted length and coverage probability (CP) for the log-normal
interval (Log-NCI), the percentile bootstrap interval (Boot-p), and the ACI. We utilize 1000 bootstrap
iterations to generate the bootstrap confidence intervals. It is configured with

γ = 0.05

as the significance threshold. Furthermore, two different prior types are taken into consideration to
produce the Bayes estimates of

R : Prior0 (ai = 0, bi = 0, i = 1, 2, 3)

represent the non-informative prior scenario, whereas Prior 1 values

a1 = 6, b1 = 4, a2 = 4, b2 = 2, a1 = 3, b1 = 4

represents the informative prior scenario, which are chosen such that the prior means match the original
means. We have computed the Bayes estimates of R under balanced (BSE, BLINEX) loss functions
with different values of ω (0, 0.25, 0.5, 0.95) and LINEX constant c (−3, 3). The Bayes estimates and
corresponding credible intervals are calculated using

N = 11000

samples, and the first
M = 1000

values are discarded as the burn-in phase. The simulation results are reported in Tables 6 and 7. Based
on the simulation results, we can conclude that:

• According to the outcomes of our simulation, biases and MSEs are found to decrease with
increasing sample sizes (N1,N2,m1,m2).
• Overall, none of the three censoring schemes performs better than the others when compared,

although the random scheme (Scheme 3 in Tables 6–8) performs better when it comes to minimal
MSEs than the other two schemes. In most cases shown in Tables 6–8, in terms of minimal MSEs,
schemes 1–3 are the schemes that perform the best through worst. This is true in several m and N
cases.
• The results indicate that the different estimations are successful since the estimated values are near

to the actual values and the bias and MSEs generally decrease as sample sizes (N1,N2,m1,m2)
grow.
• The Bayes estimators seem to be sensitive to the assumed values of the prior parameters, based

on the performance of the estimators based on Prior 0 and 1.
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Table 6. Bias’s and MSE’s of the point estimations for R when T1 = 0.6,T2 = 0.5, R =
0.5714 (I).

Scheme ML Bootstrap BSE BLINEX( c = −3) BLINEX( c = 3)
N1 = N2 m1 = m2 R = S ω Prior 0 Prior 1 Prior 0 Prior 1 Prior 0 Prior 1
30 10 (20,0∗9) Bias 0.0927 0.0996 0.0 0.0864 0.0488 0.0860 0.0487 0.0867 0.0490

MSE 0.0132 0.0151 0.0116 0.0036 0.0113 0.0035 0.0130 0.0041
Bias 0.25 0.0879 0.0596 0.0872 0.0589 0.0881 0.0597
MSE 0.0120 0.0054 0.0116 0.0052 0.0128 0.0057
Bias 0.50 0.0895 0.0705 0.0887 0.0694 0.0896 0.0706
MSE 0.0124 0.0076 0.0120 0.0073 0.0128 0.0077
Bias 0.95 0.0923 0.0904 0.0922 0.0902 0.0923 0.0904
MSE 0.0131 0.0126 0.0131 0.0125 0.0131 0.0125

(0∗9, 20) Bias 0.1033 0.1135 0.0 0.0940 0.0517 0.0944 0.0523 0.0942 0.0518
MSE 0.0165 0.0197 0.0137 0.0040 0.0137 0.0040 0.0148 0.0045
Bias 0.25 0.0963 0.0645 0.0962 0.0645 0.0964 0.0645
MSE 0.0144 0.0062 0.0142 0.0062 0.0149 0.0065
Bias 0.50 0.0986 0.0773 0.0983 0.0769 0.0986 0.0773
MSE 0.0150 0.0091 0.0148 0.0089 0.0152 0.0090
Bias 0.90 0.1028 0.1007 0.1027 0.1005 0.1028 0.1007
MSE 0.0163 0.0156 0.0163 0.0155 0.0163 0.0155

(0∗3, 5∗4, 0∗3) Bias 0.0899 0.0845 0.0 0.0831 0.0466 0.0828 0.0466 0.0833 0.0468
MSE 0.0124 0.0110 0.0106 0.0033 0.0105 0.0032 0.0119 0.0039
Bias 0.25 0.0847 0.0572 0.0842 0.0568 0.0849 0.0572
MSE 0.0110 0.0050 0.0108 0.0049 0.0117 0.0053
Bias 0.50 0.0865 0.0681 0.0857 0.0674 0.0865 0.0681
MSE 0.0115 0.0071 0.0113 0.0069 0.0118 0.0071
Bias 0.95 0.0896 0.0877 0.0894 0.0875 0.0896 0.0877
MSE 0.0123 0.0118 0.0123 0.0117 0.0123 0.0117

30 20 (10, 0∗9) Bias 0.0674 0.0698 0.0 0.0646 0.0466 0.0643 0.0643 0.0647 0.0466
MSE 0.0068 0.0073 0.0063 0.0032 0.0062 0.0062 0.0067 0.0035
Bias 0.25 0.0653 0.0518 0.0650 0.0650 0.0654 0.0518
MSE 0.0064 0.0040 0.0063 0.0063 0.0066 0.0041
Bias 0.50 0.0660 0.0570 0.0657 0.0657 0.0661 0.0570
MSE 0.0065 0.0049 0.0065 0.0065 0.0067 0.0049
Bias 0.95 0.0673 0.0664 0.0672 0.0672 0.0673 0.0664
MSE 0.0068 0.0066 0.0068 0.0067 0.0068 0.0066

(0∗9, 10) Bias 0.0963 0.0994 0.0 0.0643 0.0451 0.0637 0.0447 0.0644 0.0452
MSE 0.0209 0.0215 0.0063 0.0031 0.0061 0.0030 0.0068 0.0034
Bias 0.25 0.0721 0.0578 0.0734 0.0593 0.0721 0.0577
MSE 0.0080 0.0053 0.0086 0.0060 0.0088 0.0061
Bias 0.50 0.0801 0.0706 0.0806 0.0711 0.0801 0.0705
MSE 0.0110 0.0090 0.0115 0.0096 0.0112 0.0092
Bias 0.95 0.0946 0.0937 0.0940 0.0930 0.0946 0.0936
MSE 0.0197 0.0195 0.0191 0.0188 0.0190 0.0188

(0∗9, 5∗2, 0∗9) Bias 0.0636 0.0648 0.0 0.0608 0.0436 0.0614 0.0441 0.0608 0.0436
MSE 0.0062 0.0065 0.0058 0.0030 0.0058 0.0030 0.0061 0.0032
Bias 0.25 0.0614 0.0485 0.0618 0.0488 0.0615 0.0486
MSE 0.0059 0.0037 0.0059 0.0036 0.0061 0.0038
Bias 0.50 0.0622 0.0536 0.0624 0.0536 0.0621 0.0536
MSE 0.0060 0.0045 0.0060 0.0044 0.0061 0.0045
Bias 0.95 0.0635 0.0626 0.0635 0.0626 0.0635 0.0626
MSE 0.0063 0.0061 0.0063 0.0061 0.0063 0.0061
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Table 7. Bias’s and MSE’s of the point estimations for R when T1 = 0.6,T2 = 0.5, R =
0.5714 (II).

Scheme ML Boot-p BSE BLINEX( c = −3) BLINEX( c = 3)
N1 = N2 m1 = m2 R = S ω Prior 0 Prior 1 Prior 0 Prior 1 Prior 0 Prior 1

50 10 (40,0∗9) Bias 0.0871 0.0941 0.0 0.0812 0.0458 0.0832 0.0475 0.0812 0.0457
MSE 0.0126 0.0142 0.0110 0.0034 0.0111 0.0035 0.0120 0.0037
Bias 0.25 0.0826 0.0560 0.0836 0.0566 0.0826 0.0559
MSE 0.0114 0.0051 0.0113 0.0051 0.0119 0.0053
Bias 0.50 0.0841 0.0663 0.0843 0.0661 0.0841 0.0663
MSE 0.0118 0.0072 0.0117 0.0070 0.0120 0.0072
Bias 0.90 0.0868 0.0850 0.0867 0.0848 0.0868 0.0850
MSE 0.0125 0.0120 0.0125 0.0119 0.0125 0.0119

(0∗9, 40) Bias 0.1002 0.1116 0.0 0.0904 0.0482 0.0921 0.0494 0.0903 0.0482
MSE 0.0157 0.0187 0.0130 0.0036 0.0133 0.0037 0.0137 0.0040
Bias 0.25 0.0928 0.0610 0.0937 0.0620 0.0928 0.0608
MSE 0.0136 0.0057 0.0137 0.0059 0.0139 0.0058
Bias 0.50 0.0952 0.0740 0.0956 0.0745 0.0951 0.0738
MSE 0.0143 0.0085 0.0143 0.0086 0.0142 0.0081
Bias 0.90 0.0997 0.0976 0.0996 0.0975 0.0997 0.0975
MSE 0.0155 0.0149 0.0155 0.0148 0.0155 0.0147

(0, 5∗8, 0) Bias 0.0896 0.0847 0.0 0.0822 0.0461 0.0826 0.0467 0.0825 0.0463
MSE 0.0126 0.0114 0.0107 0.0033 0.0106 0.0032 0.0117 0.0038
Bias 0.25 0.0841 80.0568 0.0837 0.0566 0.0842 0.0569
MSE 0.0111 0.0049 0.0110 0.0048 0.0118 0.0053
Bias 0.50 0.0858 0.0677 0.0852 0.0669 0.0859 0.0677
MSE 0.0116 0.0071 0.0114 0.0069 0.0119 0.0072
Bias 0.95 0.0892 0.0874 0.0890 0.0871 0.0892 0.0874
MSE 0.0125 0.0119 0.0125 0.0118 0.0125 0.0119

50 30 (20, 0∗29) Bias 0.0523 0.0537 0.0 0.0510 0.0405 0.0507 0.0403 0.0510 0.0405
MSE 0.0045 0.0048 0.0043 0.0027 0.0042 0.0026 0.0044 0.0028
Bias 0.25 0.0513 0.0434 0.0510 0.0431 0.0513 0.0434
MSE 0.0044 0.0031 0.0043 0.0030 0.0045 0.0032
Bias 0.50 0.0516 0.0463 0.0513 0.0461 0.0516 0.0464
MSE 0.0044 0.0035 0.0046 0.0035 0.0045 0.0036
Bias 0.95 0.0522 0.0517 0.0522 0.0516 0.0522 0.0516
MSE 0.0045 0.0044 0.0045 0.0044 0.0045 0.0044

(0∗29, 20) Bias 0.0537 0.0551 0.0 0.0505 0.0392 0.0509 0.0394 0.0505 0.0393
MSE 0.0050 0.0053 0.0040 0.0024 0.0041 0.0024 0.0041 0.0025
Bias 0.25 0.0513 0.0428 0.0518 0.0432 0.0513 0.0428
MSE 0.0042 0.0029 0.0043 0.0030 0.0042 0.0029
Bias 0.50 0.0521 0.0464 0.0525 0.0468 0.0521 0.0464
MSE 0.0044 0.0035 0.0045 0.0037 0.0043 0.0034
Bias 0.95 0.0536 0.0531 0.0537 0.0530 0.0536 0.0530
MSE 0.0050 0.0049 0.0050 0.0049 0.0049 0.0048

(0∗14, 5∗2, 0∗14) Bias 0.0523 0.0529 0.0 0.0509 0.0404 0.0505 0.0402 0.0509 0.0405
MSE 0.0043 0.0044 0.0041 0.0026 0.0040 0.0025 0.0042 0.0027
Bias 0.25 0.0512 0.0434 0.0508 0.0432 0.0513 0.0434
MSE 0.0041 0.0030 0.0040 0.0029 0.0043 0.0030
Bias 0.50 0.0516 0.0464 0.0512 0.0461 0.0516 0.0464
MSE 0.0042 0.0034 0.0041 0.0033 0.0042 0.0034
Bias 0.95 0.0522 0.0518 0.0522 0.0517 0.0522 0.0517
MSE 0.0043 0.0042 0.0043 0.0042 0.0043 0.0042
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Table 8. Bias’s and MSE’s of the point estimations for R when T1 = 0.6,T2 = 0.5, R =
0.5714 (III).

Scheme ML Boot-p BSE BLINEX( c = −3) BLINEX( c = 3)
N1 = N2 m1 = m2 R = S ω Prior 0 Prior 1 Prior 0 Prior 1 Prior 0 Prior 1

50 40 (10,0∗39) Bias 0.0454 0.0468 0.0 0.0443 0.0373 0.0447 0.0375 0.0444 0.0372
MSE 0.0032 0.0034 0.0031 0.0022 0.0030 0.0022 0.0031 0.0023
Bias 0.25 0.0446 0.0393 0.0448 0.0394 0.0446 0.0392
MSE 0.0031 0.0024 0.0031 0.0024 0.0031 0.0025
Bias 0.50 0.0448 0.0413 0.0449 0.0413 0.0448 0.0412
MSE 0.0031 0.0026 0.0031 0.0026 0.0031 0.0027
Bias 0.95 0.0453 0.0450 0.0453 0.0449 0.0453 0.0449
MSE 0.0032 0.0031 0.0031 0.0031 0.0032 0.0031

(0∗39, 10) Bias 0.2343 0.2336 0.0 0.0420 0.0350 0.0417 0.0348 0.0420 0.0350
MSE 0.0923 0.0922 0.0026 0.0018 0.0027 0.0018 0.0028 0.0019
Bias 0.25 0.0877 0.0827 0.1047 0.1006 0.0869 0.0818
MSE 0.0114 0.0102 0.0174 0.0164 0.0149 0.0139
Bias 0.50 0.1363 0.1329 0.1468 0.1440 0.1351 0.1316
MSE 0.0292 0.0281 0.0353 0.0345 0.0289 0.0280
Bias 0.95 0.2245 0.2241 0.2212 0.2207 0.2242 0.2238
MSE 0.0844 0.0842 0.0809 0.0806 0.0790 0.0785

(0∗19, 5∗2,0∗19) Bias 0.0453 0.0461 0.0 0.0444 0.0373 0.0442 0.0372 0.0445 0.0374
MSE 0.0031 0.0032 0.0030 0.0021 0.0030 0.0020 0.0031 0.0026
Bias 0.25 0.0447 0.0393 0.0445 0.0391 0.0448 0.0394
MSE 0.0030 0.0023 0.0030 0.0023 0.0031 0.0024
Bias 0.50 0.0449 0.0414 0.0447 0.0411 0.0450 0.0414
MSE 0.0031 0.0025 0.0030 0.0026 0.0031 0.0026
Bias 0.95 0.0453 0.0450 0.0453 0.0450 0.0453 0.0450
MSE 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031

• The Bayes estimate under LINEX with ω = 0 and c = −3 provides better estimates for R because
of having the smallest MSEs.
The interval average lengths (ALs) and CPs are used in Table 9 to compare the suggested
confidence intervals. The following conclusions are drawn from these tables:
• For various censoring schemes, in terms of interval length, the bootstrap interval is the largest,

while the Bayesian credible intervals under both prior 0 and priors 1 are the smallest. Moreover,
the ACIs are the second-best ones.
• By expanding the sample size, the ALs and the CPs for ML, bootstrap and Bayesian approaches

have improved.
• When comparing the confidence/credible interval lengths based on schemes 1 and 2 to those based

on scheme 3, it is evident that the second scheme’s intervals in most cases for N and m have the
shortest.
• When the sample size increases, the coverage probabilities approach 1−γ, indicating that the ACIs

will get more accurate. Through a comparison of the various credible and confidence intervals,
it is clear that, in the majority of cases that are taken into consideration, the Bayes intervals offer
the highest coverage percentages. Based on the Prior 1, the Bayes credible interval performs best.
Further, in the case of traditional asymptotic intervals, the CPs are less than 0.95 and always more
than 0.95 under Prior 1, but for Bayesian intervals they remain close to 0.95 under Prior 0. While
the bootstrap confidence intervals are bigger than the other confidence intervals, they perform
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well in terms of coverage probability.

Table 9. Average confidence/credible interval lengths (AL) with for coverage percentage
(CP) T1 = 0.6,T2 = 0.5

Scheme ACI Log normal-CI Boot-p Bayes
Prior 0 Prior 1

N1 = N2 m1 = m2 R = S AL CP AL CP AL CP AL CP AL CP
30 10 (20,0∗9) 0.4170 0.905 0.4285 0.916 0.4289 0.945 0.4070 0.953 0.3219 0.966

(0∗9, 20) 0.4133 0.885 0.4245 0.873 0.4570 0.860 0.4055 0.933 0.3192 0.997
(0∗3, 5∗4, 0∗3) 0.4175 0.915 0.4287 0.914 0.4298 0.955 0.4080 0.968 0.3213 0.992

20 (10,0∗19) 0.3002 0.918 0.3040 0.930 0.3276 0.943 0.2964 0.950 0.2578 0.988
(0∗19, 10) 0.2813 0.852 0.2852 0.860 0.3189 0.872 0.2976 0.948 0.2575 0.987

(0∗9, 5∗2, 0∗9) 0.3003 0.935 0.3041 0.945 0.3280 0.967 0.2966 0.947 0.2579 0.973
50 10 (0∗9, 40) 0.4166 0.910 0.4277 0.918 0.4956 0.965 0.4063 0.943 0.3211 0.995

(40,0∗9) 0.4135 0.888 0.4244 0.893 0.4611 0.913 0.4063 0.937 0.3194 0.987
(0, 5∗8, 0) 0.4162 0.907 0.4272 0.910 0.4948 0.987 0.4056 0.955 0.3207 0.975

30 (0∗29, 20) 0.2467 0.918 0.2488 0.925 0.2652 0.940 0.2447 0.938 0.2215 0.963
(20,0∗29) 0.2457 0.947 0.2477 0.94 0.2647 0.902 0.2450 0.965 0.2206 0.980

(0∗14, 5∗2, 0∗14) 0.2467 0.922 0.2487 0.925 0.2650 0.968 0.2445 0.935 0.2212 0.965
40 (0∗39, 10) 0.2141 0.933 0.2154 0.930 0.2255 0.942 0.2128 0.957 0.1967 0.980

(10,0∗39) 0.2126 0.942 0.2128 0.930 0.2239 0.938 0.2136 0.954 0.1963 0.978
(0∗19, 5∗2, 0∗19) 0.2143 0.937 0.2156 0.943 0.2487 0.957 0.2129 0.9475 0.1970 0.982

6. Conclusions and further works

In this work, S-S reliability of the Chen distribution is statistically inferred with the assumption
that the data is adaptive type-II progressively censored. The point and interval estimates of the S-S
reliability are determined by applying the ML technique. Additionally, the approximated confidence
intervals for the S-S reliability as well as the parametric percentile bootstrap confidence interval are
produced. The delta approach is used to approximate the variance of the S-S reliability estimators in
order to achieve the approximation normal/log-normal intervals. By taking into consideration
balanced squared error and balanced LINEX loss functions under informative gamma prior, the Bayes
estimates are obtained. The Bayes estimates and credible intervals for the S-S reliability are obtained
using the MCMC approach. Using a comprehensive numerical analysis, we analyze the supplied
estimates with respect to their MSE, confidence lengths, and CPs. Additionally, a case study is
conducted to offer background information on the suggested methods. The numerical findings show
that the Bayes estimates perform better than estimates obtained by applying the ML method. The
Bayesian estimations produce more accurate estimates when the asymmetric loss function is used
instead of the symmetric loss.

In general, the strengths of this work may be summed up as follows:
(1) When X and Y follow the Chen distribution, several estimators for R = P(X < Y) are determined

analytically. This is a crucial subject in statistical modeling and reliability engineering.
(2) Adaptive progressive type-II censored data is highly versatile and may be used in survival

analysis in medical research, electronic component reliability testing, and clinical trials with little
funding.

(3) The Chen distribution is a great choice for computing a reliability system when adaptive
progressive type-II censored data is available. This contributes to the corpus of knowledge already
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present in the literature.
(4) The suitability of Chen’s distributions to the model of a real dataset is demonstrated through a

case study.
(5) MC simulations were used to establish the validity of the expressions and the overall

methodological framework.
On the other hand, the most important weakness of this research is that the amount of data used to

clarify the methodology and equations developed in the research is limited, and therefore the
superiority of Chen’s distributions over other potential models needs to be evaluated on a
case-by-case basis.

The findings presented in this study might, with slight modifications, be applied to additional forms
of failure data: jointly adaptive progressive type-II, progressive first-failure data, and joint progressive
Type-II censored data. Inference for the

R = P(X < Y)

reliability for Chen systems with dependent components appears to be an interesting and practical area
of study in the future. In addition to the techniques described in this study, other estimate techniques
including Expectation Maximization (EM) and Stochastic EM algorithms will be used. The assessment
of the S-S dependability based on the Chen distribution with a common second shape parameter is the
only topic of our investigation. We’ll look at the situation of unequal form parameters in the future.
Moreover, the strength random variables are assumed to be independently and identically distributed,
which could not fully reflect some real-world scenarios. Thus, future research will take into account
the analysis of multicomponent S-S systems with different strength factors.
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