Let $ \mathcal{A} $ be a factor von Neumann algebra acting on a complex Hilbert space $ H $ with dim $ \mathcal{A} > 1 $. We prove that if a map $ \delta: \mathcal{A}\rightarrow \mathcal{A} $ satisfies $ \delta([[A, B]_{\ast}, C]_{\ast}) = [[\delta(A), B]_{\ast}, C]_{\ast}+[[A, \delta(B)]_{\ast}, C]_{\ast} +[[A, B]_{\ast}, \delta(C)]_{\ast} $ for any $ A, B, C\in \mathcal{A} $ with $ A^{\ast}B^{\ast}C = 0 $, then $ \delta $ is an additive $ \ast $-derivation.
Citation: Liang Kong, Chao Li. Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras[J]. AIMS Mathematics, 2022, 7(8): 13963-13976. doi: 10.3934/math.2022771
Let $ \mathcal{A} $ be a factor von Neumann algebra acting on a complex Hilbert space $ H $ with dim $ \mathcal{A} > 1 $. We prove that if a map $ \delta: \mathcal{A}\rightarrow \mathcal{A} $ satisfies $ \delta([[A, B]_{\ast}, C]_{\ast}) = [[\delta(A), B]_{\ast}, C]_{\ast}+[[A, \delta(B)]_{\ast}, C]_{\ast} +[[A, B]_{\ast}, \delta(C)]_{\ast} $ for any $ A, B, C\in \mathcal{A} $ with $ A^{\ast}B^{\ast}C = 0 $, then $ \delta $ is an additive $ \ast $-derivation.
[1] | M. Ashraf, B. A. Wani, F. Wei, Multiplicative $\ast$-Lie triple higher derivations of standard operator algebras, Queast. Math., 42 (2019), 857–884. https://doi.org/10.2989/16073606.2018.1502213 doi: 10.2989/16073606.2018.1502213 |
[2] | D. Benkovič, Lie triple derivations of unital algebras with idempotents, Linear Multilinear A., 63 (2015), 141–165. https://doi.org/10.1080/03081087.2013.851200 doi: 10.1080/03081087.2013.851200 |
[3] | Z. Chen, Z. Xiao, Nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras, Linear Multilinear A., 60 (2012), 645–656. https://doi.org/10.1080/03081087.2011.624096 doi: 10.1080/03081087.2011.624096 |
[4] | P. Ji, R. Liu, Y. Zhao, Nonlinear Lie triple derivations of triangular algebras, Linear Multilinear A., 60 (2012), 1155–1164. https://doi.org/10.1080/03081087.2011.652109 doi: 10.1080/03081087.2011.652109 |
[5] | C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sin., 32 (2016), 821–830. https://doi.org/10.1007/s10114-016-5690-1 doi: 10.1007/s10114-016-5690-1 |
[6] | C. Li, Y. Zhao, F. Zhao, Nonlinear $\ast$-Jordan-type derivations on $\ast$-algebras, Rocky MT J. Math., 51 (2021), 601–612. https://doi.org/10.1216/rmj.2021.51.601 doi: 10.1216/rmj.2021.51.601 |
[7] | C. Li, Q. Chen, T. Wang, Nonlinear maps preserving the Jordan triple $\ast$-product on factors, Chin. Ann. Math. Ser. B, 39 (2018), 633–642. https://doi.org/10.1007/s11401-018-0086-4 doi: 10.1007/s11401-018-0086-4 |
[8] | C. Li, Q. Chen, Strong skew commutativity preserving maps on rings with involution, Acta Math. Sin., 32 (2016), 745–752. https://doi.org/10.1007/s10114-016-4761-7 doi: 10.1007/s10114-016-4761-7 |
[9] | C. Li, F. Lu, 2-local $\ast$-Lie isomorphisms of operator algebras, Aequationes Math., 90 (2016), 905–916. https://doi.org/10.1007/s00010-016-0411-5 doi: 10.1007/s00010-016-0411-5 |
[10] | W. Lin, Nonlinear $\ast$-Lie-type derivations on von Neumann algebras, Acta Math. Hungar, 156 (2018), 112–131. https://doi.org/10.1007/s10474-018-0803-1 doi: 10.1007/s10474-018-0803-1 |
[11] | C. R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc., 71 (1978), 57–61. https://doi.org/10.2307/2042216 doi: 10.2307/2042216 |
[12] | P. Šemrl, On Jordan $\ast$-derivations and an application, Colloq. Math., 59 (1990), 241–251. http://dx.doi.org/10.4064/cm-59-2-241-251 doi: 10.4064/cm-59-2-241-251 |
[13] | P. Šemrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc., 119 (1993), 1105–1113. http://dx.doi.org/10.1090/S0002-9939-1993-1158008-3 doi: 10.1090/S0002-9939-1993-1158008-3 |
[14] | A. Taghavi, H. Rohi, A note on skew product preserving maps on factor von Neumann algebras, Rocky MT J. Math., 47 (2017), 2083–2094. http://dx.doi.org/10.1216/RMJ-2017-47-6-2083 doi: 10.1216/RMJ-2017-47-6-2083 |
[15] | A. Taghavi, M. Nouri, V. Darvish, A note on nonlinear skew Lie triple derivations between prime $\ast$-algebras, Korean J. Math., 26 (2018), 459–465. https://doi.org/10.11568/kjm.2018.26.3.459 doi: 10.11568/kjm.2018.26.3.459 |
[16] | D. Wang, Z. Xiao, Lie triple derivations of incidence algebras, Commun. Algebra, 47 (2019), 1841–1852. https://doi.org/10.1080/00927872.2018.1523422 doi: 10.1080/00927872.2018.1523422 |
[17] | Z. Xiao, F. Wei, Lie triple derivations of triangular algebras, Linear Algebra Appl., 437 (2012), 1234–1249. https://doi.org/10.1016/j.laa.2012.04.015 doi: 10.1016/j.laa.2012.04.015 |
[18] | Z. Yang, J. Zhang, Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras, Linear Multilinear A., 68 (2020), 377–390. https://doi.org/10.1080/03081087.2018.1506732 doi: 10.1080/03081087.2018.1506732 |
[19] | W. Yu, J. Zhang, Nonlinear $\ast$-Lie derivations on factor von Neumann algebras, Linear Algebra Appl., 437 (2012), 1979–1991. https://doi.org/10.1016/j.laa.2012.05.032 doi: 10.1016/j.laa.2012.05.032 |
[20] | J. Zhang, B. Wu, H. Cao, Lie triple derivations of nest algebras, Linear Algebra Appl., 416 (2006), 559–567. https://doi.org/10.1016/j.laa.2005.12.003 doi: 10.1016/j.laa.2005.12.003 |
[21] | X. Zhao, H. Hao, Non-global nonlinear Lie triple derivable maps on finite von Neumann algebras, Bull. Iran. Math. Soc., 47 (2021), 307–322. https://doi.org/10.1007/s41980-020-00493-4 doi: 10.1007/s41980-020-00493-4 |
[22] | F. Zhao, C. Li, Nonlinear $\ast$-Jordan triple derivations on von Neumann algebras, Math. Slovaca, 68 (2018), 163–170. https://doi.org/10.1515/ms-2017-0089 doi: 10.1515/ms-2017-0089 |