Citation: Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma. Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial $b$-metric space[J]. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[2] | I. A. Bakhtin, The contraction principle in quasi metric spaces, Funct. Anal., 30 (1989), 26-37. |
[3] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11. |
[4] | S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703-711. doi: 10.1007/s00009-013-0327-4 |
[5] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183-197. doi: 10.1111/j.1749-6632.1994.tb44144.x |
[6] | R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76. |
[7] | S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727-730. |
[8] | W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclic contractive conditions, Fixed Point Theory, 4 (2003), 79-89. |
[9] | E. Karapnar, Fixed point theory for cyclic weak ψ-contraction, Appl. Math. Lett., 24 (2011), 822-825. doi: 10.1016/j.aml.2010.12.016 |
[10] | X. Fan, Fixed point theorems for cyclic mappings in quasi-partial b-metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 2175-2189. doi: 10.22436/jnsa.009.05.22 |
[11] | E. Karapınar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85-87. |
[12] | E. Karapınar, R. P. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 1-7. |
[13] | E. Karapınar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2019), 1-7. |
[14] | Y. U. Gaba, E. Karapınar, A new approach to the interpolation contraction, Axioms, 8 (2019), 1-4. |
[15] | H. Aydi, C. M. Chen, E. Karapınar, Interpolative Ćirić-Riech-Rus type contractions via the Brainciari distance, Mathematics, 7 (2019), 1-7. |
[16] | E. Karapınar, R. P. Agarwal, Interpolative Rus-Riech-Ćirić type contractions via the simulation function, An. St. Univ. Ovidius Constant, 27 (2019), 137-152.. |
[17] | H. Aydi, E. Karapınar, A. F. Rol$\mathop {\rm{d}}\limits^` $an López de Hierro, ω-Interpolative Ćirić-Riech-Rus type contractions, Mathematics, 7 (2019), 1-8. |
[18] | L. B. Ćirić, On contraction type mappings, Math. Balkanica, 1 (1971), 52-57. |
[19] | L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26. |
[20] | S. Reich, Some remarks concerning contraction mappings, Bull. Can. Math., 14 (1971), 121-124. doi: 10.4153/CMB-1971-024-9 |
[21] | S. Reich, Fixed point of contractive functions, Boll. Un. Mat. Ital., 4 (1972), 26-42. |
[22] | S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital., 4 (1971), 1-11. |
[23] | G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of reich, Can. Math. Bull., 16 (1973), 201-206. doi: 10.4153/CMB-1973-036-0 |
[24] | H. Aydi, E. Karapınar, A Meir-Keeler common type fixed point theorem on partial metric spaces, Fixed Point Theory Appl., 2012 (2012), 1-10. doi: 10.1186/1687-1812-2012-1 |
[25] | L. Ćirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398-2406. |
[26] | E. Karapınar, K. P. Chi, T. D. Thanh, A generalization of Ćirić quasi-contractions, Abstr. Appl. Anal., 2012 (2012), 1-9. |
[27] | S. G. Krein, J. I. Petunin, E. M. Semenov, Interpolation of linear operators, American Mathematical Society, Providence, RI, USA, 2002. |
[28] | E. Karapınar, I. M. Erhan, Fixed point theorem for operators on partial metric space, Appl. Math. Lett., 24 (2011), 1894-1899. doi: 10.1016/j.aml.2011.05.013 |
[29] | A. Gupta, P. Gautam, Topological structure of quasi-partial b-metric spaces, Int. J. Pure Math. Sci., 17 (2016), 8-18. doi: 10.18052/www.scipress.com/IJPMS.17.8 |
[30] | K. P. Chi, E. Karapınar, T. D. Thanh, A generalized contraction principle in partial metric space, Math. Comput. Modell., 55 (2012), 1673-1681. doi: 10.1016/j.mcm.2011.11.005 |
[31] | E. Karapınar, İ. M. Erhan, A. Özt ürk, Fixed point theorems on quasi-partial metric space, Math. Comput. Modell., 57 (2013), 2442-2448. doi: 10.1016/j.mcm.2012.06.036 |
[32] | A. Gupta, P. Gautam, Quasi-partial b-metric spaces and some related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 1-12. doi: 10.1186/1687-1812-2015-1 |
[33] | V. N. Mishra, L. M. Snchez Ruiz, P. Gautam, S. Verma, Interpolative ReichRusĆirić and HardyRogers contraction on quasi-partial b-metric space and related fixed point results, Mathematics, 8 (2020), 1-11. |
[34] | A. Gupta, P. Gautam, Some coupled fixed point theorems on quasi-partial b-metric spaces, Int. J. Math. Anal., 9 (2015), 293-306. doi: 10.12988/ijma.2015.412388 |