This research paper investigated fixed point results for almost ($ \zeta-\theta _{\rho } $)-contractions in the context of quasi-metric spaces. The study focused on a specific class of ($ \zeta -\theta _{\rho } $)-contractions, which exhibit a more relaxed form of contractive property than classical contractions. The research not only established the existence of fixed points under the almost ($ \zeta -\theta _{\rho } $)-contraction framework but also provided sufficient conditions for the convergence of fixed point sequences. The proposed theorems and proofs contributed to the advancement of the theory of fixed points in quasi-metric spaces, shedding light on the intricate interplay between contraction-type mappings and the underlying space's quasi-metric structure. Furthermore, an application of these results was presented, highlighting the practical significance of the established theory. The application demonstrated how the theory of almost ($ \zeta -\theta _{\rho } $)-contractions in quasi-metric spaces can be utilized to solve real-world problems.
Citation: Gonca Durmaz Güngör, Ishak Altun. Fixed point results for almost ($ \zeta -\theta _{\rho } $)-contractions on quasi metric spaces and an application[J]. AIMS Mathematics, 2024, 9(1): 763-774. doi: 10.3934/math.2024039
This research paper investigated fixed point results for almost ($ \zeta-\theta _{\rho } $)-contractions in the context of quasi-metric spaces. The study focused on a specific class of ($ \zeta -\theta _{\rho } $)-contractions, which exhibit a more relaxed form of contractive property than classical contractions. The research not only established the existence of fixed points under the almost ($ \zeta -\theta _{\rho } $)-contraction framework but also provided sufficient conditions for the convergence of fixed point sequences. The proposed theorems and proofs contributed to the advancement of the theory of fixed points in quasi-metric spaces, shedding light on the intricate interplay between contraction-type mappings and the underlying space's quasi-metric structure. Furthermore, an application of these results was presented, highlighting the practical significance of the established theory. The application demonstrated how the theory of almost ($ \zeta -\theta _{\rho } $)-contractions in quasi-metric spaces can be utilized to solve real-world problems.
[1] | M. Ali, T. Kamran, N. Shahzad, Best proximity point for $\alpha $-$\psi $-proximal contractive multimaps, Abstr. Appl. Anal., 2014 (2014), 181598. http://dx.doi.org/10.1155/2014/181598 doi: 10.1155/2014/181598 |
[2] | I. Altun, N. Al-Arifi, M. Jleli, A. Lashin, B. Samet, A new concept of $(\alpha, F_{d})$-contraction on quasi metric space, J. Nonlinear Sci. Appl., 9 (2016), 3354–3361. |
[3] | I. Altun, H. Hançer, G. Mınak, On a general class of weakly Picard operators, Miskolc Math. Notes, 16 (2015), 25–32. http://dx.doi.org/10.18514/MMN.2015.1168 doi: 10.18514/MMN.2015.1168 |
[4] | A. Arutyunov, A. Greshnov, $(q_{1}, q_{2})$-quasimetric spaces. Covering mappings and coincidence points, Izv. Math., 82 (2018), 245. http://dx.doi.org/10.1070/IM8546 doi: 10.1070/IM8546 |
[5] | A. Arutyunov, A. Greshnov, $(q_{1}, q_{2})$-quasimetric spaces. Covering mappings and coincidence points. A review of the results, Fixed Point Theor., 23 (2022), 473–486. http://dx.doi.org/10.24193/fpt-ro.2022.2.03 doi: 10.24193/fpt-ro.2022.2.03 |
[6] | H. Aydi, A. Felhi, E. Karapinar, F. Alojail, Fixed points on quasi-metric spaces via simulation functions and consequences, J. Math. Anal., 9 (2018), 10–24. |
[7] | J. Brzdek, E. Karapinar, A. Petruşel, A fixed point theorem and the Ulam stability in generalized $dq$-metric spaces, J. Math. Anal. Appl., 467 (2018), 501–520. http://dx.doi.org/10.1016/j.jmaa.2018.07.022 doi: 10.1016/j.jmaa.2018.07.022 |
[8] | S. Cobzaş, Completeness in quasi-metric spaces and Ekeland variational principle, Topol. Appl., 158 (2011), 1073–1084. http://dx.doi.org/10.1016/j.topol.2011.03.003 doi: 10.1016/j.topol.2011.03.003 |
[9] | S. Cobzaş, Functional analysis in asymmetric normed spaces, Basel: Springer, 2013. http://dx.doi.org/10.1007/978-3-0348-0478-3 |
[10] | G. Durmaz, G. Mınak, I. Altun, Fixed point results for $\alpha $-$\psi $-contractive mappings including almost contractions and applications, Abstr. Appl. Anal., 2014 (2014), 869123. http://dx.doi.org/10.1155/2014/869123 doi: 10.1155/2014/869123 |
[11] | A. Farajzadeh, M. Delfani, Y. Wang, Existence and uniqueness of fixed points of generalized $F$-contraction mappings, J. Math., 2021 (2021), 6687238. http://dx.doi.org/10.1155/2021/6687238 doi: 10.1155/2021/6687238 |
[12] | Y. Gaba, Startpoints and ($\alpha$-$\gamma$)-contractions in quasi-pseudometric spaces, J. Math., 2014 (2014), 709253. http://dx.doi.org/10.1155/2014/709253 doi: 10.1155/2014/709253 |
[13] | A. Greshnov, V. Potapov, About coincidence points theorems on $2$-step Carnot groups with $1$-dimensional centre equipped with Box-quasimetrics, AIMS Mathematics, 8 (2023), 6191–6205. http://dx.doi.org/10.3934/math.2023313 doi: 10.3934/math.2023313 |
[14] | G. Güngör, I. Altun, Some fixed point results for $\alpha $-admissible mappings on quasi metric space via $\theta$-contractions, Mathematical Sciences and Applications E-Notes, 12 (2024), 12–19. http://dx.doi.org/10.36753/mathenot.1300609 doi: 10.36753/mathenot.1300609 |
[15] | T. Hicks, Fixed point theorems for quasi-metric spaces, Math. Japonica, 33 (1988), 231–236. |
[16] | C. Hollon, J. Neugebauer, Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition, Conference Publications, 2015 (2015), 615–620. http://dx.doi.org/10.3934/proc.2015.0615 doi: 10.3934/proc.2015.0615 |
[17] | N. Hussain, E. Karapınar, P. Salimi, F. Akbar, $\alpha $-admissible mappings and related fixed point theorems, J. Inequal. Appl., 2013 (2013), 114. http://dx.doi.org/10.1186/1029-242X-2013-114 doi: 10.1186/1029-242X-2013-114 |
[18] | N. Hussain, C. Vetro, F. Vetro, Fixed point results for $\alpha $-implicit contractions with application to integral equations, Nonlinear Anal.-Model., 21 (2016), 362–378. http://dx.doi.org/10.15388/NA.2016.3.5 doi: 10.15388/NA.2016.3.5 |
[19] | M. Jleli, E. Karapinar, B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 439. http://dx.doi.org/10.1186/1029-242X-2014-439 doi: 10.1186/1029-242X-2014-439 |
[20] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. http://dx.doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38 |
[21] | E. Karapınar, B. Samet, Generalized $\alpha $-$\psi $-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 793486. http://dx.doi.org/10.1155/2012/793486 doi: 10.1155/2012/793486 |
[22] | F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. http://dx.doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K |
[23] | P. Kumam, C. Vetro, F. Vetro, Fixed points for weak $\alpha $-$\psi $-contractions in partial metric spaces, Abstr. Appl. Anal., 2013 (2013), 986028. http://dx.doi.org/10.1155/2013/986028 doi: 10.1155/2013/986028 |
[24] | A. Latif, S. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theor. Appl., 2011 (2011), 178306. http://dx.doi.org/10.1155/2011/178306 doi: 10.1155/2011/178306 |
[25] | M. Olgun, T. Alyildiz, Ö. Biçer, A new aspect to Picard operators with simulation functions, Turk. J. Math., 40 (2016), 832–837. http://dx.doi.org/10.3906/mat-1505-26 doi: 10.3906/mat-1505-26 |
[26] | I. Reilly, P. Subrahmanyam, M. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math., 93 (1982), 127–140. http://dx.doi.org/10.1007/BF01301400 doi: 10.1007/BF01301400 |
[27] | B. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290. http://dx.doi.org/10.2307/1997954 doi: 10.2307/1997954 |
[28] | S. Romaguera, Left $K$-completeness in quasi-metric spaces, Math. Nachr., 157 (1992), 15–23. http://dx.doi.org/10.1002/mana.19921570103 doi: 10.1002/mana.19921570103 |
[29] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. http://dx.doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[30] | H. Şimsek, M. Yalçın, Generalized $Z$-contraction on quasi metric spaces and a fixed point result, J. Nonlinear Sci. Appl., 10 (2017), 3397–3403. http://dx.doi.org/10.22436/jnsa.010.07.03 doi: 10.22436/jnsa.010.07.03 |
[31] | W. Wilson, On quasi-metric spaces, Am. J. Math., 53 (1931), 675–684. http://dx.doi.org/10.2307/2371174 doi: 10.2307/2371174 |