Due to the lack of symmetry property for the quasi metrics, we have considered left and right versions of best proximity points of multivalued mappings of quasi metric spaces. Further we consider the problem of existence of semi (left and right) best proximity points of generalized multivalued contractions of quasi metric spaces via various versions of so called $ p- $property. Some examples are given to explain the results.
Citation: Arshad Ali Khan, Basit Ali, Reny George. On semi best proximity points for multivalued mappings in quasi metric spaces[J]. AIMS Mathematics, 2023, 8(10): 23835-23849. doi: 10.3934/math.20231215
Due to the lack of symmetry property for the quasi metrics, we have considered left and right versions of best proximity points of multivalued mappings of quasi metric spaces. Further we consider the problem of existence of semi (left and right) best proximity points of generalized multivalued contractions of quasi metric spaces via various versions of so called $ p- $property. Some examples are given to explain the results.
[1] | R. P. Agarwal, N. Hussain, M. A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., 2012 (2012), 245872. https://doi.org/10.1155/2012/245872 doi: 10.1155/2012/245872 |
[2] | B. Ali, A. A. Khan, M. De la Sen, Optimum solutions of systems of differential equations via best proximity points in $b-$metric spaces, Mathematics, 11 (2023), 574. https://doi.org/10.3390/math11030574 doi: 10.3390/math11030574 |
[3] | I. Altun, G. Durmaz, G. Mınak, S. Romaguera, Multivalued almost $\mathcal{F}-$contractions on complete metric spaces, Filomat, 30 (2016), 441–448. |
[4] | M. Aslantas, H. Sahin, R. J. Al-Okbi, Some best proximity point results on best orbitally complete quasi metric spaces, AIMS Math., 8 (2023), 7967–7980. https://doi.org/10.3934/math.2023401 doi: 10.3934/math.2023401 |
[5] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[6] | H. Dağ, G. Mınak, I. Altun, Some fixed point results for multivalued $\mathcal{F}-$contractions on quasi metric spaces, RACSAM, 111 (2017), 177–187. https://doi.org/10.1007/s13398-016-0285-3 doi: 10.1007/s13398-016-0285-3 |
[7] | K. Fallahi, H. Ghahramani, G. S. Rad, Integral type contractions in partially ordered metric spaces and best proximity point, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 177–183. https://doi.org/10.1007/s40995-019-00807-0 doi: 10.1007/s40995-019-00807-0 |
[8] | K. Fallahi, G. S. Rad, Best proximity points theorem in $b-$ metric spaces endowed with a graph, Fixed Point Theory, 21 (2020), 465–474. https://doi.org/10.24193/fpt-ro.2020.2.33 doi: 10.24193/fpt-ro.2020.2.33 |
[9] | H. A. Hancer, M. Olgun, I. Altun, Some new types multivalued $\mathcal{F}-$contractions on quasi metric spaces and their fixed points, Carpathian J. Math., 35 (2019), 41–50. |
[10] | L. Khammahawong, P. Kumam, D. M. Lee, Y. J. Cho, Best proximity points for multi-valued Suzuki $\alpha-\;\mathcal{F}-$proximal contractions, J. Fixed Point Theory Appl., 19 (2017), 2847–2871. https://doi.org/10.1007/s11784-017-0457-6 doi: 10.1007/s11784-017-0457-6 |
[11] | A. A. Khan, B. Ali, Completeness of $b-$metric spaces and best proximity points of nonself quasi-contractions, Symmetry, 13 (2021), 2206. https://doi.org/10.3390/sym13112206 doi: 10.3390/sym13112206 |
[12] | K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240. https://doi.org/10.1007/BF01110225 doi: 10.1007/BF01110225 |
[13] | A. Latif, S. A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory Appl., 2011 (2011), 178306. https://doi.org/10.1155/2011/178306 doi: 10.1155/2011/178306 |
[14] | S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488. http://dx.doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |
[15] | J. B. Prolla, Fixed point theorems for set valued mappings and existence of best approximations, Numer. Funct. Anal. Opt., 5 (1983), 449–455. https://doi.org/10.1080/01630568308816149 doi: 10.1080/01630568308816149 |
[16] | S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62 (1978), 104–113. https://doi.org/10.1016/0022-247X(78)90222-6 doi: 10.1016/0022-247X(78)90222-6 |
[17] | V. M. Sehgal, S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc., 102 (1988), 534–537. https://doi.org/10.1090/S0002-9939-1988-0928974-5 doi: 10.1090/S0002-9939-1988-0928974-5 |
[18] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[19] | W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675–684. https://doi.org/10.2307/2371174 |