In this paper, we first introduced the notion of $ \theta $-hyperbolic sine distance functions on a metric space and studied their properties. We investigated the existence and uniqueness of fixed points for some classes of single-valued mappings defined on a complete metric space and satisfying contractions involving the $ \theta $-hyperbolic sine distance function.
Citation: Mohamed Jleli, Bessem Samet. On $ \theta $-hyperbolic sine distance functions and existence results in complete metric spaces[J]. AIMS Mathematics, 2024, 9(10): 29001-29017. doi: 10.3934/math.20241407
In this paper, we first introduced the notion of $ \theta $-hyperbolic sine distance functions on a metric space and studied their properties. We investigated the existence and uniqueness of fixed points for some classes of single-valued mappings defined on a complete metric space and satisfying contractions involving the $ \theta $-hyperbolic sine distance function.
[1] | D. Aronov, Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons, J. Neurosci. Meth., 124 (2023), 175–179. https://doi.org/10.1016/S0165-0270(03)00006-2 doi: 10.1016/S0165-0270(03)00006-2 |
[2] | A. L. Gibbs, Convergence in the Wasserstein metric for Markov chain Monte Carlo algorithms with applications to image restoration, Stoch. Models, 20 (2004), 473–492. https://doi.org/10.1081/STM-200033117 doi: 10.1081/STM-200033117 |
[3] | E. Vidal, H. M. Rulot, F. Casacuberta, J. M. Benedi, On the use of a metric-space search algorithm (AESA) for fast DTW-based recognition of isolated words, IEEE Trans. Acoust. Speech Signal Process., 36 (1988), 651–660. https://doi.org/10.1109/29.1575 doi: 10.1109/29.1575 |
[4] | S. G. Matthews, Partial metric spaces, A. NY. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[5] | M. B. Smyth, Completeness of quasi-uniform and syntopological spaces, Lond. Math. Soc., 49 (1994), 385–400. https://doi.org/10.1112/jlms/49.2.385 doi: 10.1112/jlms/49.2.385 |
[6] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[7] | I. A. Bakhtin, Contracting mapping principle in an almost metric space (Russian), Funkts. Anal., 30 (1989), 26–37. |
[8] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133 |
[9] | I. A. Bakhtin, Contracting mapping principle in an almost metric space (Russian), Funkts. Anal., 30 (1989), 26–37. |
[10] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
[11] | M. Berzig, First results in suprametric spaces with applications, Mediterr. J. Math., 19 (2022), 1–18. https://doi.org/10.1007/s00009-022-02148-6 doi: 10.1007/s00009-022-02148-6 |
[12] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6 |
[13] | V. Ozturk, S. Radenović, Hemi metric spaces and Banach fixed point theorem, Appl. Gen. Topol., 25 (2024), 175–181. https://doi.org/10.4995/agt.2024.19780 doi: 10.4995/agt.2024.19780 |
[14] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer International Publishing Switzeralan, 2014. https://doi.org/10.1007/978-3-319-10927-5 |
[15] | M. Younis, H. Ahmad, L. Chen, M. Han, Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations, J. Geom. Phys., 192 (2023), 104955. https://doi.org/10.1016/j.geomphys.2023.104955 doi: 10.1016/j.geomphys.2023.104955 |
[16] | M. Younis, A. A. N. Abdou, Novel fuzzy contractions and applications to engineering science, Fractal Fract., 8 (2024), 28. https://doi.org/10.3390/fractalfract8010028 doi: 10.3390/fractalfract8010028 |
[17] | H. Ahmad, F. U. Din, M. Younis, A fixed point analysis of fractional dynamics of heat transfer in chaotic fluid layers, J. Comput. Appl. Math., 453 (2025), 116144. https://doi.org/10.1016/j.cam.2024.116144 doi: 10.1016/j.cam.2024.116144 |
[18] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[19] | R. Kannan, Some results on fixed points, Bull. Calc. Math. Soc., 60 (1968), 71–76. https://doi.org/10.2307/2316437 |
[20] | L. Ćirić, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2 |
[21] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6 |
[22] | J. Caballero, J. Harjani, K. A. Sadarangani, Fixed point theorem for operators of Meir-Keeler type via the degree of nondensifiability and its application in dynamic programming, J. Fixed Point Theory A., 22 (2020), 13. https://doi.org/10.1007/s11784-019-0748-1 doi: 10.1007/s11784-019-0748-1 |
[23] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K |
[24] | A. Chanda, L. K. Dey, S. Radenović, Simulation functions: A survey of recent results, RACSAM Rev. R. Acad. A, 113 (2019), 2923–2957. https://doi.org/10.1007/s13398-018-0580-2 doi: 10.1007/s13398-018-0580-2 |
[25] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[26] | I. Kedim, M. Berzig, Fixed point theorems for Maia $\alpha-\psi$ contractive type mappings with applications, J. Math. Anal. Appl., 504 (2021), 125381. https://doi.org/10.1016/j.jmaa.2021.125381 doi: 10.1016/j.jmaa.2021.125381 |
[27] | O. Popescu, Fixed points for $(\psi, \varphi)$-weak contractions, Appl. Math. Lett., 24 (2011), 1–4. |
[28] | H. Aydi, On common fixed point theorems for $(\psi, \varphi)$-generalized $f$-weakly contractive mappings, Miskolc Math. Notes, 14 (2013), 19–30. https://doi.org/10.18514/MMN.2013.399 doi: 10.18514/MMN.2013.399 |
[29] | A. H. Ansari, M. Berzig, S. Chandok, Some fixed point theorems for (CAB)-contractive mappings and related results, Math. Morav., 19 (2015), 97–112. https://doi.org/10.5937/MatMor1502097A doi: 10.5937/MatMor1502097A |
[30] | E. Petrov, Fixed point theorem for mappings contracting perimeters of triangles, J. Fixed Point Theory A., 25 (2023), 74. https://doi.org/10.1007/s11784-023-01078-4 doi: 10.1007/s11784-023-01078-4 |
[31] | I. A. Rus, Generalized contractions and applications, Cluj University Press, 2001. |
[32] | S. Pakhira, S. M. Hossein, A new fixed point theorem in Gb-metric space and its application to solve a class of nonlinear matrix equations, J. Comput. Appl. Math., 437 (2024), 115474. https://doi.org/10.1016/j.cam.2023.115474 doi: 10.1016/j.cam.2023.115474 |
[33] | D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, In: Mathematics and its Applications (East European Series), Springer Science and Business Media, 1993. |
[34] | Y. Han, S. Xu, J. Chen, H. Yang, Fixed point theorems for $b$-generalized contractive mappings with weak continuity conditions, AIMS Math., 9 (2024), 15024–15039. https://doi.org/10.3934/math.2024728 doi: 10.3934/math.2024728 |