In this paper, we prove a common fixed-point theorem for four self-mappings with a function family on $ S_{b} $-metric spaces. In addition, we investigate some geometric properties of the fixed-point set of a given self-mapping. In this context, we obtain a fixed-disc (resp. fixed-circle), fixed-ellipse, fixed-hyperbola, fixed-Cassini curve and fixed-Apollonious circle theorems on $ S_{b} $-metric spaces.
Citation: Nihal Taş, Irshad Ayoob, Nabil Mlaiki. Some common fixed-point and fixed-figure results with a function family on $ S_{b} $-metric spaces[J]. AIMS Mathematics, 2023, 8(6): 13050-13065. doi: 10.3934/math.2023657
In this paper, we prove a common fixed-point theorem for four self-mappings with a function family on $ S_{b} $-metric spaces. In addition, we investigate some geometric properties of the fixed-point set of a given self-mapping. In this context, we obtain a fixed-disc (resp. fixed-circle), fixed-ellipse, fixed-hyperbola, fixed-Cassini curve and fixed-Apollonious circle theorems on $ S_{b} $-metric spaces.
[1] | S. Banach, Sur les operations dans les ensembles abstraitset leur application aux equations integrals, Fund. Math., 3 (1992), 133–181. |
[2] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[3] | A. H. Ansari, O. Ege, S. Radenović, Some fixed point results on complex valued $G_{b}$-metric spaces, RACSAM, 112 (2018), 463–472. http://doi.org/10.1007/s13398-017-0391-x doi: 10.1007/s13398-017-0391-x |
[4] | O. Ege, Complex valued $G_{b}$-metric spaces, J. Comput. Anal. Appl., 20 (2016), 363–368. |
[5] | S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in $S$-metric spaces, Math. Vestn., 64 (2012), 258–266. |
[6] | H. Poşul, E. Kaplan, S. Kütükçü, Fuzzy cone $b$-metric spaces, Sigma J. Eng. Nat. Sci., 37 (2019), 1297–1310. |
[7] | E. Kaplan, S. Kütükçü, Modular $A$-metric spaces, J. Sci. Arts, 3 (2017), 423–432. |
[8] | E. Kaplan, S. Kütükçü, A common fixed point theorem for new type compatible maps on modular metric spaces, Asian-Eur. J. Math., 16 (2023), 2250229. http://doi.org/10.1142/S1793557122502291 doi: 10.1142/S1793557122502291 |
[9] | E. Kaplan, S. Kütükçü, On various types $w$-compatible mappings in modular $A$-metric spaces, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 4 (2022), 744–753. http://doi.org/10.35414/akufemubid.1033584 |
[10] | N. V. Dung, N. T. Hieu, S. Radojevic, Fixed point theorems for $g$-monotone maps on partially ordered $S$-metric spaces, Filomat, 28 (2014), 1885–1898. http://doi.org/10.2298/FIL1409885D doi: 10.2298/FIL1409885D |
[11] | W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Mathematics, 8 (2023), 9314–9330. http://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468 |
[12] | A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via $A\nu-\alpha-$contractions with a pair and two pairs of self-mappings in the frame of an extended quasib-metric space, AIMS Mathematics, 8 (2023), 7225–7241. http://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363 |
[13] | M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $S-$ metric spaces, AIMS Mathematics, 8 (2023), 4407–4441. http://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220 |
[14] | S. Sedghi, A. Gholidahneh, T. Došenović, J. Esfahani, S. Radenović, Common fixed point of four maps in $S_{b}$-metric spaces, J. Linear Topol. Algebra, 5 (2016), 93–104. |
[15] | N. Taş, N. Y. Özgür, New generalized fixed point results on $S_{b}$-metric spaces, Konuralp J. Math., 9 (2021), 24–32. |
[16] | A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered $G_{b}$-metric spaces, Filomat, 28 (2014), 1087–1101. |
[17] | E. Kaplan, S. Kütükçü, Common fixed point theorems under the $\left(CLR_{g}\right) $ property with applications, Int. J. Nonlinear Anal. Appl., 13 (2022), 2133–2140. http://doi.org/10.22075/IJNAA.2021.24158.2684 doi: 10.22075/IJNAA.2021.24158.2684 |
[18] | E. Kaplan, S. Kütükçü, Common fixed points of $w$-compatible maps in modular $A$-metric spaces, The Pure and Applied Mathematics, 28 (2021), 103–110. http://doi.org/10.7468/jksmeb.2021.28.2.103 doi: 10.7468/jksmeb.2021.28.2.103 |
[19] | E. Kaplan, S. Kütükçü, A common fixed point theorem in $A$-metric spaces, In: International studies on natural and engineering sciences, Gece Kitaplığı, 2020, 86–95. |
[20] | N. Y. Özgür, N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 1433–1449. http://doi.org/10.1007/s40840-017-0555-z doi: 10.1007/s40840-017-0555-z |
[21] | N. Özgür, N. Taş, Geometric properties of fixed points and simulation functions, 2021, arXiv: 2102.05417. http://doi.org/10.48550/arXiv.2102.05417 |
[22] | H. Aytimur, N. Taş, A geometric interpretation to fixed-point theory on $S_{b}$-metric spaces, 2021, arXiv: 2108.03516. http://doi.org/10.48550/arXiv.2108.03516 |
[23] | H. Aytimur, Ş. Güvenç, N. Taş, New fixed figure results with the notion of $k$-ellipse, 2021, arXiv: 2112.10204. http://doi.org/10.48550/arXiv.2112.10204 |
[24] | G. Z. Erçınar, Some geometric properties of fixed points, PhD Thesis, Eskişehir Osmangazi University, 2020. |
[25] | M. Joshi, A. Tomar, S. K. Padaliya, Fixed point to fixed ellipse in metric spaces and discontinuous activation function, Applied Mathematics E-Notes, 21 (2021), 225–237. |
[26] | E. Kaplan, N. Mlaiki, N. Taş, S. Haque, A. K. Souayah, Some fixed-circle results with different auxiliary functions, J. Funct. Space., 2022 (2022), 2775733. http://doi.org/10.1155/2022/2775733 doi: 10.1155/2022/2775733 |
[27] | N. Taş, Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turk. J. Math., 44 (2020), 1330–1344. http://doi.org/10.3906/mat-1911-18 doi: 10.3906/mat-1911-18 |
[28] | N. Mlaiki, N. Taş, E. Kaplan, S. S. Aiadi, A. K. Souayah, Some common fixed-circle results on metric spaces, Axioms, 11 (2022), 454. http://doi.org/10.3390/axioms11090454 doi: 10.3390/axioms11090454 |
[29] | S. S. Duraj, S. Liftaj, A common fixed-point theorem of mappings on $S$-metric spaces, J. Probab. Stat., 20 (2022), 40–45. http://doi.org/10.9734/ajpas/2022/v20i2417 doi: 10.9734/ajpas/2022/v20i2417 |
[30] | S. Sedghi, N. V. Dung, Fixed point theorems on $S$-metric spaces, Math. Vesnik, 66 (2014), 113–124. |
[31] | N. Y. Özgür, N. Taş, Generalizations of metric spaces: from the fixed-point theory to the fixed-circle theory, In: Applications of nonlinear analysis, Springer, 2018,847–895. http://doi.org/10.1007/978-3-319-89815-5-28 |
[32] | N. Y. Özgür, N. Taş, Some new contractive mappings on $S$-metric spaces and their relationships with the mapping ($S25$), Math. Sci., 11 (2017), 7–16. http://doi.org/10.1007/s40096-016-0199-4 doi: 10.1007/s40096-016-0199-4 |
[33] | K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, 2015, arXiv: 1502.01852. https://doi.org/10.48550/arXiv.1502.01852 |