Research article

Some common fixed-point and fixed-figure results with a function family on $ S_{b} $-metric spaces

  • Received: 18 February 2023 Revised: 22 March 2023 Accepted: 23 March 2023 Published: 03 April 2023
  • MSC : 47H09, 47H10, 54H25

  • In this paper, we prove a common fixed-point theorem for four self-mappings with a function family on $ S_{b} $-metric spaces. In addition, we investigate some geometric properties of the fixed-point set of a given self-mapping. In this context, we obtain a fixed-disc (resp. fixed-circle), fixed-ellipse, fixed-hyperbola, fixed-Cassini curve and fixed-Apollonious circle theorems on $ S_{b} $-metric spaces.

    Citation: Nihal Taş, Irshad Ayoob, Nabil Mlaiki. Some common fixed-point and fixed-figure results with a function family on $ S_{b} $-metric spaces[J]. AIMS Mathematics, 2023, 8(6): 13050-13065. doi: 10.3934/math.2023657

    Related Papers:

  • In this paper, we prove a common fixed-point theorem for four self-mappings with a function family on $ S_{b} $-metric spaces. In addition, we investigate some geometric properties of the fixed-point set of a given self-mapping. In this context, we obtain a fixed-disc (resp. fixed-circle), fixed-ellipse, fixed-hyperbola, fixed-Cassini curve and fixed-Apollonious circle theorems on $ S_{b} $-metric spaces.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraitset leur application aux equations integrals, Fund. Math., 3 (1992), 133–181.
    [2] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
    [3] A. H. Ansari, O. Ege, S. Radenović, Some fixed point results on complex valued $G_{b}$-metric spaces, RACSAM, 112 (2018), 463–472. http://doi.org/10.1007/s13398-017-0391-x doi: 10.1007/s13398-017-0391-x
    [4] O. Ege, Complex valued $G_{b}$-metric spaces, J. Comput. Anal. Appl., 20 (2016), 363–368.
    [5] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in $S$-metric spaces, Math. Vestn., 64 (2012), 258–266.
    [6] H. Poşul, E. Kaplan, S. Kütükçü, Fuzzy cone $b$-metric spaces, Sigma J. Eng. Nat. Sci., 37 (2019), 1297–1310.
    [7] E. Kaplan, S. Kütükçü, Modular $A$-metric spaces, J. Sci. Arts, 3 (2017), 423–432.
    [8] E. Kaplan, S. Kütükçü, A common fixed point theorem for new type compatible maps on modular metric spaces, Asian-Eur. J. Math., 16 (2023), 2250229. http://doi.org/10.1142/S1793557122502291 doi: 10.1142/S1793557122502291
    [9] E. Kaplan, S. Kütükçü, On various types $w$-compatible mappings in modular $A$-metric spaces, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 4 (2022), 744–753. http://doi.org/10.35414/akufemubid.1033584
    [10] N. V. Dung, N. T. Hieu, S. Radojevic, Fixed point theorems for $g$-monotone maps on partially ordered $S$-metric spaces, Filomat, 28 (2014), 1885–1898. http://doi.org/10.2298/FIL1409885D doi: 10.2298/FIL1409885D
    [11] W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Mathematics, 8 (2023), 9314–9330. http://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468
    [12] A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via $A\nu-\alpha-$contractions with a pair and two pairs of self-mappings in the frame of an extended quasib-metric space, AIMS Mathematics, 8 (2023), 7225–7241. http://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
    [13] M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $S-$ metric spaces, AIMS Mathematics, 8 (2023), 4407–4441. http://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220
    [14] S. Sedghi, A. Gholidahneh, T. Došenović, J. Esfahani, S. Radenović, Common fixed point of four maps in $S_{b}$-metric spaces, J. Linear Topol. Algebra, 5 (2016), 93–104.
    [15] N. Taş, N. Y. Özgür, New generalized fixed point results on $S_{b}$-metric spaces, Konuralp J. Math., 9 (2021), 24–32.
    [16] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered $G_{b}$-metric spaces, Filomat, 28 (2014), 1087–1101.
    [17] E. Kaplan, S. Kütükçü, Common fixed point theorems under the $\left(CLR_{g}\right) $ property with applications, Int. J. Nonlinear Anal. Appl., 13 (2022), 2133–2140. http://doi.org/10.22075/IJNAA.2021.24158.2684 doi: 10.22075/IJNAA.2021.24158.2684
    [18] E. Kaplan, S. Kütükçü, Common fixed points of $w$-compatible maps in modular $A$-metric spaces, The Pure and Applied Mathematics, 28 (2021), 103–110. http://doi.org/10.7468/jksmeb.2021.28.2.103 doi: 10.7468/jksmeb.2021.28.2.103
    [19] E. Kaplan, S. Kütükçü, A common fixed point theorem in $A$-metric spaces, In: International studies on natural and engineering sciences, Gece Kitaplığı, 2020, 86–95.
    [20] N. Y. Özgür, N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 1433–1449. http://doi.org/10.1007/s40840-017-0555-z doi: 10.1007/s40840-017-0555-z
    [21] N. Özgür, N. Taş, Geometric properties of fixed points and simulation functions, 2021, arXiv: 2102.05417. http://doi.org/10.48550/arXiv.2102.05417
    [22] H. Aytimur, N. Taş, A geometric interpretation to fixed-point theory on $S_{b}$-metric spaces, 2021, arXiv: 2108.03516. http://doi.org/10.48550/arXiv.2108.03516
    [23] H. Aytimur, Ş. Güvenç, N. Taş, New fixed figure results with the notion of $k$-ellipse, 2021, arXiv: 2112.10204. http://doi.org/10.48550/arXiv.2112.10204
    [24] G. Z. Erçınar, Some geometric properties of fixed points, PhD Thesis, Eskişehir Osmangazi University, 2020.
    [25] M. Joshi, A. Tomar, S. K. Padaliya, Fixed point to fixed ellipse in metric spaces and discontinuous activation function, Applied Mathematics E-Notes, 21 (2021), 225–237.
    [26] E. Kaplan, N. Mlaiki, N. Taş, S. Haque, A. K. Souayah, Some fixed-circle results with different auxiliary functions, J. Funct. Space., 2022 (2022), 2775733. http://doi.org/10.1155/2022/2775733 doi: 10.1155/2022/2775733
    [27] N. Taş, Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turk. J. Math., 44 (2020), 1330–1344. http://doi.org/10.3906/mat-1911-18 doi: 10.3906/mat-1911-18
    [28] N. Mlaiki, N. Taş, E. Kaplan, S. S. Aiadi, A. K. Souayah, Some common fixed-circle results on metric spaces, Axioms, 11 (2022), 454. http://doi.org/10.3390/axioms11090454 doi: 10.3390/axioms11090454
    [29] S. S. Duraj, S. Liftaj, A common fixed-point theorem of mappings on $S$-metric spaces, J. Probab. Stat., 20 (2022), 40–45. http://doi.org/10.9734/ajpas/2022/v20i2417 doi: 10.9734/ajpas/2022/v20i2417
    [30] S. Sedghi, N. V. Dung, Fixed point theorems on $S$-metric spaces, Math. Vesnik, 66 (2014), 113–124.
    [31] N. Y. Özgür, N. Taş, Generalizations of metric spaces: from the fixed-point theory to the fixed-circle theory, In: Applications of nonlinear analysis, Springer, 2018,847–895. http://doi.org/10.1007/978-3-319-89815-5-28
    [32] N. Y. Özgür, N. Taş, Some new contractive mappings on $S$-metric spaces and their relationships with the mapping ($S25$), Math. Sci., 11 (2017), 7–16. http://doi.org/10.1007/s40096-016-0199-4 doi: 10.1007/s40096-016-0199-4
    [33] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, 2015, arXiv: 1502.01852. https://doi.org/10.48550/arXiv.1502.01852
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1114) PDF downloads(86) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog