In this paper, we introduce F-b-metric space (function weighted b-metric space) as a generalization of the F-metric space (the function weighted metric space). We also propose and prove some topological properties of the F-b-metric space, the theorems of fixed point and the common fixed point for the generalized expansive mappings, and an application on dynamic programing.
Citation: Budi Nurwahyu, Naimah Aris, Firman. Some results in function weighted b-metric spaces[J]. AIMS Mathematics, 2023, 8(4): 8274-8293. doi: 10.3934/math.2023417
In this paper, we introduce F-b-metric space (function weighted b-metric space) as a generalization of the F-metric space (the function weighted metric space). We also propose and prove some topological properties of the F-b-metric space, the theorems of fixed point and the common fixed point for the generalized expansive mappings, and an application on dynamic programing.
[1] | I. A. Bakhtin, The contraction mapping principle in quasi- metric spaces, Funct. Anal., 30 (1989), 26–37. |
[2] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11. |
[3] | R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. https://doi.org/10.22436/jnsa.008.06.11 doi: 10.22436/jnsa.008.06.11 |
[4] | R. George, A. Belhenniche, S. Benahmed, Z. D. Mitrović, N. Mlaiki, L. Guran, On an open question in controlled rectangular b-metric spaces, Mathematics, 8 (2020), 2239. https://doi.org/10.3390/math8122239 doi: 10.3390/math8122239 |
[5] | A. Belhenniche, L. Guran, S. Benahmed, F. L. Pereira, Solving nonlinear and dynamic programming equations on extended b-metric spaces with the fixed-point technique, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 24. https://doi.org/10.1186/s13663-022-00736-5 doi: 10.1186/s13663-022-00736-5 |
[6] | M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl., 2010 (2010), 315398. https://doi.org/10.1155/2010/315398 doi: 10.1155/2010/315398 |
[7] | A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133 |
[8] | R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math., 17 (2003), 134–160. https://doi.org/10.1137/S0895480102412856 doi: 10.1137/S0895480102412856 |
[9] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[10] | X. Huang, C. Zhu, X. Wen, Fixed point theorems for expanding mappings in cone metric spaces, Math. Rep., 14 (2012), 141–148. |
[11] | C. Chen, C. Zhu, Fixed point theorems for times reasonable expansive mapping, Fixed Point Theory Appl., 2008 (2008), 302617. https://doi.org/10.1155/2008/302617 doi: 10.1155/2008/302617 |
[12] | M. Akkouchi, A common fixed point theorem for expansive mappings under strict implicit conditions on b-metric spaces, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat. Math., 50 (2011), 5–15. |
[13] | J. Rashmi, R. D. Daheriya, M. Ughade, Fixed point, coincidence point and common fixed point theorems under various expansive conditions in b-metric spaces, Int. J. Sci. Innovative Math. Res., 3 (2015), 26–34. |
[14] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6 |
[15] | M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Algorithm Sci. Eng., 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7 doi: 10.1186/s13663-015-0312-7 |
[16] | A. Hussain, H. Al-Sulami, H. Hussain, H. Farooq, Newly fixed disc results using advanced contractions on F-metric space, J. Appl. Anal. Comput., 10 (2020), 2313–2322. https://doi.org/10.11948/20190197 doi: 10.11948/20190197 |
[17] | H. Işik, N. Hussain, A. R. Khan, Endpoint results for weakly contractive mappings in F-metric spaces with an application, Int. J. Nonlinear Anal. Appl., 11 (2020), 351–361. https://doi.org/10.22075/ijnaa.2020.20368.2148 doi: 10.22075/ijnaa.2020.20368.2148 |
[18] | S. Z. Wang, B. Y. Li, Z. M. Gao, K. Iseki, Some fixed point theorems on expansion mappings, Math. Jpn., 29 (1984), 631–636. |
[19] | M. Abbas, B. E. Rhoades, Common fixed point theorems for occasionally weakly compatible mappings satisfying a generalized contractive condition, Math. Commun., 13 (2008), 295–301. |