In this article, we introduce an approximation of the rotated five-point difference Crank-Nicolson R(FPCN) approach for treating the second-order two-dimensional (2D) time-fractional diffusion-wave equation (TFDWE) with damping, which is constructed from two separate sets of equations, namely transverse electric and transverse magnetic phases. Such a category of equations can be achieved by altering second-order time derivative in the ordinary diffusion damped wave model by fractional Caputo derivative of order $ \alpha $ while $ 1 < \alpha < 2 $. The suggested methodology is developed from the standard five-points difference Crank-Nicolson S(FPCN) scheme by rotating clockwise $ 45^{o} $ with respect to the standard knots. Numerical analysis is presented to demonstrate the applicability and feasibility of the R(FPCN) formulation over the S(FPCN) technique. The stability and convergence of the presented methodology are also performed.
Citation: Ajmal Ali, Tayyaba Akram, Azhar Iqbal, Poom Kumam, Thana Sutthibutpong. A numerical approach for 2D time-fractional diffusion damped wave model[J]. AIMS Mathematics, 2023, 8(4): 8249-8273. doi: 10.3934/math.2023416
In this article, we introduce an approximation of the rotated five-point difference Crank-Nicolson R(FPCN) approach for treating the second-order two-dimensional (2D) time-fractional diffusion-wave equation (TFDWE) with damping, which is constructed from two separate sets of equations, namely transverse electric and transverse magnetic phases. Such a category of equations can be achieved by altering second-order time derivative in the ordinary diffusion damped wave model by fractional Caputo derivative of order $ \alpha $ while $ 1 < \alpha < 2 $. The suggested methodology is developed from the standard five-points difference Crank-Nicolson S(FPCN) scheme by rotating clockwise $ 45^{o} $ with respect to the standard knots. Numerical analysis is presented to demonstrate the applicability and feasibility of the R(FPCN) formulation over the S(FPCN) technique. The stability and convergence of the presented methodology are also performed.
[1] | Y. Povstenko, Linear fractional diffusion-wave equation for scientists and engineers, Birkhäuser Cham, 2015. https://doi.org/10.1007/978-3-319-17954-4 |
[2] | O. P. Agrawal, O. Defterli, D. Baleanu, Fractional optimal control problems with several state and control variables, J. Vib. Control., 16 (2010), 1967–1976. https://doi.org/10.1177/1077546309353361 doi: 10.1177/1077546309353361 |
[3] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[4] | O. A. Arqub, S. Nabil, Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media, J. Porous Med., 22 (2019), 411–434. https://doi.org/10.1615/JPorMedia.2019028970 doi: 10.1615/JPorMedia.2019028970 |
[5] | O. A. Arqub, Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space, Fund. Inf., 166 (2019), 87–110. |
[6] | W. R. Schneider, W. Wyss, Fractional diffusion and wave equation, J. Math. Phys., 30 (1989), 134–144. https://doi.org/10.1063/1.528578 doi: 10.1063/1.528578 |
[7] | R. Gorenflo, Y. Luchko, F. Mainardi, Wright function as scale-invariant solution of the wave equation, J. Comput. Appl. Math., 118 (2000), 175–191. https://doi.org/10.1016/S0377-0427(00)00288-0 doi: 10.1016/S0377-0427(00)00288-0 |
[8] | G. Jumarie, Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett., 22 (2009), 1659–1664. https://doi.org/10.1016/j.aml.2009.05.011 doi: 10.1016/j.aml.2009.05.011 |
[9] | C. M. Chen, F. Liu, I. Turner, V. A. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), 886–897. https://doi.org/10.1016/j.jcp.2007.05.012 doi: 10.1016/j.jcp.2007.05.012 |
[10] | S. Wang, M. Xu, X. Li, Green's function of time fractional diffusion equation and its applications in fractional quantum mechanics, Nonlinear Anal.: Real World Appl., 10 (2009), 1081–1086. https://doi.org/10.1016/j.nonrwa.2007.11.024 doi: 10.1016/j.nonrwa.2007.11.024 |
[11] | X. Zhang, J. Zhao, J. Liu, B. Tang, Homotopy perturbation method for two dimensional time-fractional wave equation, Appl. Math. Model., 38 (2014), 5545–5552. https://doi.org/10.1016/j.apm.2014.04.018 doi: 10.1016/j.apm.2014.04.018 |
[12] | J. Chen, F. Liu, V. Anh, S. Shen, Q. Liu, C. Liao, The analytical solution and numerical solution of the fractional diffusion-wave equation with damping, Appl. Math. Comput., 219 (2012), 1737–1748. https://doi.org/10.1016/j.amc.2012.08.014 doi: 10.1016/j.amc.2012.08.014 |
[13] | A. K. Pani, J. Y. Yuan, Mixed finite element method for a strongly damped wave equation, Numer. Methods Partial Differ. Equ., 17 (2001), 105–119. |
[14] | Z. G. Shi, Y. M. Zhao, F. Liu, Y. F. Tang, F. L. Wang, Y. H. Shi, High accuracy analysis of an $H^{1}$-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations, Comput. Math. Appl., 74 (2017), 1903–1914. https://doi.org/10.1016/j.camwa.2017.06.057 doi: 10.1016/j.camwa.2017.06.057 |
[15] | K. Mihály, L. Stig, L. Fredrik, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise Ⅱ. Fully discrete schemes, BIT Numer. Math., 53 (2013), 497–525. https://doi.org/10.1093/geront/gnt023 doi: 10.1093/geront/gnt023 |
[16] | G. Matthias, K. Mihály, L. Stig, Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise, BIT Numer. Math., 49 (2009), 343–356. https://doi.org/10.1007/s10543-009-0227-y doi: 10.1007/s10543-009-0227-y |
[17] | A. Iqbal, N. N. Hamid, A. I. Ismail, M. Abbas, Galerkin approximation with quintic B-spline as basis and weight functions for solving second order coupled nonlinear Schrödinger equations, Math. Comput. Simul., 187 (2021), 1–16. https://doi.org/10.3917/parl2.hs16.0187 doi: 10.3917/parl2.hs16.0187 |
[18] | Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), 524–529. https://doi.org/10.1016/j.amc.2009.05.018 doi: 10.1016/j.amc.2009.05.018 |
[19] | A. Kadem, Y. Luchko, D. Baleanu, Spectral method for solution of the fractional transport equation, Rep. Math. Phys., 66 (2010), 103–115. https://doi.org/10.1016/S0034-4877(10)80026-6 doi: 10.1016/S0034-4877(10)80026-6 |
[20] | T. Akram, M. Abbas, A. I. Izani, An extended cubic B-spline collocation scheme for time fractional sub-diffusion equation, AIP Conf. Proc., 2184 (2019), 060017. https://doi.org/10.1063/1.5136449 doi: 10.1063/1.5136449 |
[21] | T. Akram, M. Abbas, A. Ali, A. Iqbal, D. Baleanu, A numerical approach of a time fractional reaction-diffusion model with a non-singular kernel, Symmetry, 12 (2020), 1653. https://doi.org/10.3390/sym12101653 doi: 10.3390/sym12101653 |
[22] | T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, Development and analysis of new approximation of extended cubic B-spline to the non-linear time fractional Klein-Gordon equation, Fractals, 28 (2020), 2040039. https://dx.doi.org/10.1142/S0218348X20400393 doi: 10.1142/S0218348X20400393 |
[23] | A. Ali, N. H. M. Ali, On numerical solution of fractional order delay differential equation using Chebyshev collocation method, New Trends Math. Sci., 6 (2018), 8–17. http://dx.doi.org/10.20852/ntmsci.2017.240 doi: 10.20852/ntmsci.2017.240 |
[24] | A. Ali, N. H. M. Ali, On numerical solution of multi-terms fractional differential equations using shifted Chebyshev poynomials, Int. J. Pur. Appl. Math., 120 (2018), 111–125. https://doi.org/10.1016/j.critrevonc.2018.03.012 doi: 10.1016/j.critrevonc.2018.03.012 |
[25] | M. Martins, W. S. Yousif, D. J. Evans, Explicit group AOR method for solving elliptic partial differential equations, Neural Parallel Sci. Comput., 10 (2002), 411–421. |
[26] | M. Othman, A. R. Abdullah, D. J. Evans, A parallel four points modified explicit group algorithm on shared memory multiprocessors, Parallel Algorithms Appl., 19 (2004), 1–9. https://doi.org/10.1080/1063719042000208818 doi: 10.1080/1063719042000208818 |
[27] | W. S. Yousif, D. J. Evans, Explicit group over-relaxation methods for solving elliptic partial differential equations, Math. Comput. Simul., 28 (1986), 453–466. https://doi.org/10.1016/0378-4754(86)90040-6 doi: 10.1016/0378-4754(86)90040-6 |
[28] | N. H. M. Ali, L. M. Kew, New explicit group iterative methods in the solution of two dimensional hyperbolic equations, J. Comput. Phys., 231 (2012), 6953–6968. https://doi.org/10.1016/j.jcp.2012.06.025 doi: 10.1016/j.jcp.2012.06.025 |
[29] | M. Othman, A. R. Abdullah, The halfsweeps multigrid method as a fast multigrid Poisson solver, Int. J. Comput. Math., 69 (1998), 319–329. https://doi.org/10.1080/00207169808804726 doi: 10.1080/00207169808804726 |
[30] | L. M. Kew, N. H. M. Ali, New explicit group iterative methods in the solution of three dimensional hyperbolic equations, J. Comput. Phys., 294 (2015), 382–404. https://doi.org/10.1016/j.jcp.2015.03.052 doi: 10.1016/j.jcp.2015.03.052 |
[31] | D. J. Evans, R. S. Haghighi, Explicit group versus implicit line iterative methods, Int. J. Comput. Math., 16 (1984), 261–316. https://doi.org/10.1080/00207168408803442 doi: 10.1080/00207168408803442 |
[32] | O. A Arqub, Z. Odibat, M. Al-Smadi, Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates, Nonlinear Dyn., 94 (2018), 1819–1834 https://doi.org/10.1007/s11071-018-4459-8 doi: 10.1007/s11071-018-4459-8 |
[33] | O. A Arqub, M. Al-Smadi, An adaptive numerical approach for the solutions of fractional advection-diffusion and dispersion equations in singular case under Riesz's derivative operator, Phys. A: Stat. Mech. Appl., 540 (2020), 123257. https://doi.org/10.1016/j.physa.2019.123257 doi: 10.1016/j.physa.2019.123257 |
[34] | A. T. Balasim, N. H. M. Ali, The solution of 2-D time-fractional diffusion equation by the fractional modified explicit group iterative method, AIP Conf. Proc., 1775 (2016), 030014. https://doi.org/10.1063/1.4965134 doi: 10.1063/1.4965134 |
[35] | A. T. Balasim, N. H. M. Ali, Group iterative methods for the solution of two-dimensional time-fractional diffusion equation, AIP Conf. Proc., 1750 (2016), 030003. https://doi.org/10.1063/1.4954539 doi: 10.1063/1.4954539 |
[36] | M. Uddin, Kamran, A. Ali, A localized transform-based meshless method for solving time fractional wave-diffusion equation, Eng. Anal. Bound. Elem., 92 (2018), 108–113. https://doi.org/10.1016/j.enganabound.2017.10.021 doi: 10.1016/j.enganabound.2017.10.021 |
[37] | V. R. Hosseini, E. Shivanian, W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys., 312 (2016), 307–332. https://doi.org/10.1016/j.jcp.2016.02.030 doi: 10.1016/j.jcp.2016.02.030 |
[38] | L. Li, D. Xu, M. Luo, Alternating direction implicit Galerkin finit element method for the two-dimensional fractional diffusion-wave quation, J. Comput. Phys., 255 (2013), 471–485. https://doi.org/10.1016/j.jcp.2013.08.031 doi: 10.1016/j.jcp.2013.08.031 |
[39] | X. Cao, H. Liu, Determining a fractional Helmholtz equation with unknown source and scattering potential, Commun. Math. Sci., 17 (2019), 1861–1876. https://doi.org/10.4310/CMS.2019.v17.n7.a5 doi: 10.4310/CMS.2019.v17.n7.a5 |
[40] | X. Cao, Y. Lin, H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imag., 13 (2019), 197–210. https://doi.org/10.3934/ipi.2019011 doi: 10.3934/ipi.2019011 |
[41] | Z. Bai, H. Diao, H. Liu, Q. Meng, Stable determination of an elastic medium scatterer by a single far-field measurement and beyond, Calc. Var. Partial Differ. Equ., 61 (2022), 170–223. https://doi.org/10.1007/s00120-022-01787-7 doi: 10.1007/s00120-022-01787-7 |
[42] | S. Yang, Y. Liu, H. Liu, C. Wang, Numerical methods for semilinear fractional diffusion equations with time delay, Adv. Appl. Math. Mech., 14 (2022), 56–78. https://doi.org/10.4208/aamm.OA-2020-0387 doi: 10.4208/aamm.OA-2020-0387 |
[43] | D. Baleanu, A. Jajarmi, M. Hajipour, On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel, Nonlinear Dyn., 94 (2018), 397–414. https://doi.org/10.1007/s11071-018-4367-y doi: 10.1007/s11071-018-4367-y |
[44] | Z. E. A. Fellah, C. Depollier, M. Fellah, Application of fractional calculus to the sound waves propagation in rigid porous materials: validation via ultrasonic measurements, Acta Acust. United Ac., 88 (2002), 34–39. |
[45] | J. Singh, D. Kumar, D. Baleanu, S. Rathore, On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588–1595. https://doi.org/10.1002/mma.5458 doi: 10.1002/mma.5458 |
[46] | X. J. Yang, T. A. Machado, D. Baleanu, Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, 25 (2017), 17400060. https://doi.org/10.1142/S0218348X17400060 doi: 10.1142/S0218348X17400060 |
[47] | D. Kumar, F. Tchier, J. Singh, D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. https://doi.org/10.3390/e20040259 doi: 10.3390/e20040259 |
[48] | M. Hajipour, A. Jajarmi, D. Baleanu, H. S. Sun, On an accurate discretization of variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 119–133. https://doi.org/10.1016/j.cnsns.2018.09.004 doi: 10.1016/j.cnsns.2018.09.004 |
[49] | R. Meng, D. Yin, C. S. Drapaca, Variable-order fractional description of compression deformation of amorphous glassy polymers, Comput. Mech., 64 (2019), 163–171. https://doi.org/10.1007/s00466-018-1663-9 doi: 10.1007/s00466-018-1663-9 |
[50] | A. Jajarmi, D. Baleanu, A new fractional analysis on the interaction of HIV with $CD{4}^{+}$ T-cells, Chaos Solitons Fract., 113 (2018), 221–229. https://doi.org/10.1016/j.chaos.2018.06.009 doi: 10.1016/j.chaos.2018.06.009 |
[51] | D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour, New aspects of poor nutrition in the life cycle within the fractional calculus, Adv. Differ. Equ., 2018 (2018), 230. https://doi.org/10.1186/s13662-018-1684-x doi: 10.1186/s13662-018-1684-x |
[52] | A. R. Shamasneh, H. A. Jalab, S. Palaiahnakote, U. H. Obaidellah, R. W. Ibrahim, M. T. El-Melegy, A new local fractional entropy-based model for kidney MRI image enhancement, Entropy, 20 (2018), 344. https://doi.org/10.3390/e20050344 doi: 10.3390/e20050344 |