Citation: Krunal B. Kachhia, Jyotindra C. Prajapati. Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator[J]. AIMS Mathematics, 2020, 5(4): 2888-2898. doi: 10.3934/math.2020186
[1] | I. H. Dimovski, On an operational calculus for a class of differential operators, C. R. Acad. Bulg. Sci., 19 (1966), 1111-1114. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam-Tokyo, 2006. |
[3] | R. Hilfer, Fractional calculus and regular variation in thermodynamics, In: Applications of Fractional calculus in Physics, Ed. R. Hilfer, World Scientific, Singapore, 2000. |
[4] | R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399-408. doi: 10.1016/S0301-0104(02)00670-5 |
[5] | K. B. Kachhia, J. C. Prajapati, Solution of fractional partial differential equation aries in study of heat transfer through diathermanous materials, J. Interdiscip. Math., 18 (2015), 125-132. doi: 10.1080/09720502.2014.996017 |
[6] | R. K. Saxena, A. M. Mathai, H. J. Haubold, Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative, Axioms, 3 (2014), 320-334. doi: 10.3390/axioms3030320 |
[7] | R. K. Saxena, Z. Tomovski, T. Sandev, Fractional Helmholtz and fractional wave equations with Riesz-Feller and generalized Riemann-Liouville fractional derivatives, Eur. J. Pure Appl. Math., 7 (2014), 312-334. |
[8] | Ž. Tomovski, T. Sandev, R. Metzler, et al. Generalized space-time fractional diffusion equation with composite fractional time derivative, Physica A, 391 (2012), 2527-2542. doi: 10.1016/j.physa.2011.12.035 |
[9] | I. Ali, N. A. Malik, Hilfer fractional advection-diffusion equations with power-law initial condition; a numerical study using variational iteration method, Comp. Math. Appl., 68 (2014), 1161-1179. doi: 10.1016/j.camwa.2014.08.021 |
[10] | R. Hilfer, Y. Luchko, Ž. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivative, Fractional Calculus Appl. Anal., 12 (2009), 299-318. |
[11] | A. Wiman, Uber de fundamental satz in der theorie der funktionen Eα(x), Acta Mathematica, 29 (1905), 191-201. |
[12] | A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797-811. doi: 10.1016/j.jmaa.2007.03.018 |
[13] | A. K. Shukla, J. C. Prajapati, On a generalized Mittag-Leffler type function and generated integral operator, Math. Sci. Res. J., 12 (2008), 283-290. |
[14] | A. K. Shukla, J. C. Prajapati, Some remarks on generalized Mittag-Leffler function, Proyecciones J. Math., 28 (2009), 27-34. |
[15] | V. Daftardar-Gejji, H. Jafari, An iterative method for solving non linear functional equations, J. Math. Anal. Appl., 316 (2006), 753-763. doi: 10.1016/j.jmaa.2005.05.009 |
[16] | S. Bhalekar, V. Daftardar-Gejji, New itreative method: Application to partial differential equations, Appl. Math. Comput., 203 (2008), 778-783. |
[17] | V. Daftardar-Gejji, S. Bhalekar, Solving fractional diffusion-wave equations using the new iterative method, Fractional Calculus Appl. Anal., 11 (2008), 193-202. |
[18] | V. B. L. Chaurasia, D. Kumar, Solution of the time-fractional Navier-Stokes Equation, Gen. Math. Notes, 4 (2011), 49-59. |