Let $ G $ be a graph with the vertex set $ V(G) $. A set $ D\subseteq V(G) $ is a total k-dominating set if every vertex $ v\in V(G) $ has at least $ k $ neighbours in $ D $. The total k-domination number $ \gamma_{kt}(G) $ is the cardinality of the smallest total k-dominating set. For $ k = 2 $ the total 2-dominating set is called double total dominating set. In this paper we determine the upper and lower bounds and some exact values for double total domination number on pyrene network $ PY(n) $, $ n\geq 1 $ and hexabenzocoronene $ XC(n) $ $ n\geq 2 $, where pyrene network and hexabenzocoronene are composed of congruent hexagons.
Citation: Ana Klobučar Barišić, Antoaneta Klobučar. Double total domination number in certain chemical graphs[J]. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076
Let $ G $ be a graph with the vertex set $ V(G) $. A set $ D\subseteq V(G) $ is a total k-dominating set if every vertex $ v\in V(G) $ has at least $ k $ neighbours in $ D $. The total k-domination number $ \gamma_{kt}(G) $ is the cardinality of the smallest total k-dominating set. For $ k = 2 $ the total 2-dominating set is called double total dominating set. In this paper we determine the upper and lower bounds and some exact values for double total domination number on pyrene network $ PY(n) $, $ n\geq 1 $ and hexabenzocoronene $ XC(n) $ $ n\geq 2 $, where pyrene network and hexabenzocoronene are composed of congruent hexagons.
[1] | S. Bermudo, R. Higuiata, J. Rada, k-domination and total k-domination in catacondensed hexagonal systems, Math. Biosci. Eng., 19 (2022), 7138–7155. https://doi.org/10.3934/mbe.2022337 doi: 10.3934/mbe.2022337 |
[2] | Y. Gao, E. Zhu, Z. Shao, I. Gutman, A. Klobučar, Total domination and open packing in some chemical graphs, J. Math. Chem., 56 (2018), 1481–1492. https://doi.org/10.1007/s10910-018-0877-6 doi: 10.1007/s10910-018-0877-6 |
[3] | M. Henning, D. Rautenbach, P. Schäfer, Open packing, total domination and $P_3$-Radon number, Discrete Math., 313 (2013), 992–998. https://doi.org/10.1016/j.disc.2013.01.022 doi: 10.1016/j.disc.2013.01.022 |
[4] | L. Hutchinson, V. Kamat, C. Larson, S. Metha, D. Muncy, N. Van Cleemput, Automated conjecturing Ⅵ: domination number of benzenoids, MATCH Commun. Math. Co., 80 (2018), 821–834. |
[5] | S. Majstorović, A. Klobučar, Upper bound for total domination number on linear and double hexagonal chains, International Journal of Chemical Modeling, 3 (2011), 139–146. |
[6] | D. Mojdeh, M. Habibi, L. Badakhshian, Total and connected domination in chemical graphs, Ital. J. Pure Appl. Math., 39 (2018), 393–401. |
[7] | J. Quadras, A. Sajiya Merlin Mahizl, I. Rajasingh, R. Sundara Rajan, Domination in certain chemical graphs, J. Math. Chem., 53 (2015), 207–219. https://doi.org/10.1007/s10910-014-0422-1 doi: 10.1007/s10910-014-0422-1 |
[8] | D. Vukičević, A. Klobučar, k-Dominating sets on linear benzenoids and on the infinite hexagonal grid, Croat. Chem. Acta, 80 (2007), 187–191. |
[9] | S. Majstorović, T. Došlić, A. Klobučar, k-Domination on hexagonal cactus chains, Kragujev. J. Math., 36 (2012), 335–347. |
[10] | A. Cabrera-Martinez, F. Hernández-Mira, New bounds on the double total domination number of graphs, Bull. Malays. Math. Sci. Soc., 45 (2022), 443–453. https://doi.org/10.1007/s40840-021-01200-0 doi: 10.1007/s40840-021-01200-0 |
[11] | S. Bermudo, J. Hernández-Gómez, J. Sigarreta, Total k-domination in strong product graphs, Discrete Appl. Math., 263 (2019), 51–58. https://doi.org/10.1016/j.dam.2018.03.043 doi: 10.1016/j.dam.2018.03.043 |
[12] | S. Bermudo, J. Hernández-Gómez, J. Sigarreta, On the total k-domination in graphs, Discuss. Math. Graph T., 38 (2018), 301–317. https://doi.org/10.7151/dmgt.2016 doi: 10.7151/dmgt.2016 |
[13] | E. Cockayne, R. Dawes, S. Hedetniemi, Total domination in graphs, Networks, 10 (1980), 211–219. https://doi.org/10.1002/net.3230100304 doi: 10.1002/net.3230100304 |
[14] | M. Henning, A. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math., 158 (2010), 1006–1011. https://doi.org/10.1016/j.dam.2010.01.009 doi: 10.1016/j.dam.2010.01.009 |
[15] | A. Klobučar, Total domination numbers of Cartesian products, Math. Commun., 9 (2004), 35–44. |
[16] | A. Klobučar, A. Klobučar, Total and double total domination on hexagonal grid, Mathematics, 7 (2019), 1110. https://doi.org/10.3390/math7111110 doi: 10.3390/math7111110 |
[17] | I. Gutman, Hexagonal systems: a chemistry motivated excursion to combinatorial geometry, Teach. Math., 10 (2007), 1–10. |