The main purpose of this paper is to use elementary and analytic methods to study the calculating problem of one kind of Gauss sums and obtain an exact computational formula for it.
Citation: Juanli Su, Jiafan Zhang. The Gauss sums involving 24-order character and their recursive properties[J]. AIMS Mathematics, 2022, 7(11): 19641-19648. doi: 10.3934/math.20221077
The main purpose of this paper is to use elementary and analytic methods to study the calculating problem of one kind of Gauss sums and obtain an exact computational formula for it.
[1] | T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976. |
[2] | K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer-Verlag, 1982. https://doi.org/10.1007/978-1-4757-1779-2 |
[3] | B. C. Berndt, R. J. Evans, The determination of Gauss sums, B. Am. Math. Soc., 5 (1981), 107–128. https://doi.org/10.1049/ip-i-1.1981.0031 doi: 10.1049/ip-i-1.1981.0031 |
[4] | L. Chen, On the classical Gauss sums and their some properties, Symmetry, 10 (2018), 625. |
[5] | Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104 |
[6] | T. T. Wang, G. H. Chen, A note on the classical Gauss sums, Mathematics, 6 (2018), 313. |
[7] | H. Bai, J. Y. Hu, On the classical Gauss sums and the recursive properties, Adv. Differ. Equ-Ny., 2018 (2018), 387. https://doi.org/10.17992/lbl.2018.09.194 doi: 10.17992/lbl.2018.09.194 |
[8] | W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013. |
[9] | L. Chen, Z. Y. Chen, Some new hybrid power mean formulae of trigonometric sums, Adv. Differ. Equ-Ny., 2020 (2020), 220. |
[10] | L. Chen, J. Y. Hu, A linear recurrence formula involving cubic Gauss sums and Kloosterman sums, Acta Math. Sin., (Chinese Series), 61 (2018), 67–72. https://doi.org/10.9785/mdtr-2018-0203 |
[11] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1007/BF01528799 doi: 10.1007/BF01528799 |
[12] | W. P. Zhang, A. Samad, Z. Y. Chen, New Identities Dealing with Gauss Sums, Symmetry, 12 (2020), 1416. |
[13] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 70–76. https://doi.org/10.2118/0318-0076-JPT doi: 10.2118/0318-0076-JPT |
[14] | W. P. Zhang, The fourth power mean of the generalized quartic Gauss sums, Journal of Shaanxi Normal University (Natural Science Edition), 49 (2021), 1–5. |
[15] | T. T. Wang, On the fourth power mean of the generalized two-term exponential sums, Journal of Shaanxi Normal University (Natural Science Edition), 49 (2021), 6–12. |
[16] | J. Greene, D. Stanton, The triplication formula for Gauss sums, Aequationes Math., 30 (1986), 143–141. https://doi.org/10.1137/1130012 doi: 10.1137/1130012 |
[17] | W. Duke, H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Contemporary Math., 145 (1993), 255–258. https://doi.org/10.1007/978-3-322-93140-5_19 doi: 10.1007/978-3-322-93140-5_19 |
[18] | H. Davenport, H. Hasse, Die Nullstellen der Kongruenz zeta funktionen in gewissen zyklischen F$\ddot{a}$llen, J. Reine Angew. Math., 172 (1934), 151–182. https://doi.org/10.1038/scientificamerican1034-172 doi: 10.1038/scientificamerican1034-172 |