In this paper, we studied the geometry of sweeping surfaces generated by the involutes of spacelike curves with a timelike binormal in Minkowski 3-space $ E_1^3 $. First, we investigated the singularity concept, and the mean and Gaussian curvatures of these surfaces. Then, we provided the requirements for the surface to be developable (flat) and minimal. We also determined the sufficient and necessary conditions for the parameter curves of these surfaces to be geodesic and asymptotic. Moreover, we analyzed these surfaces when the parameter curves are lines of curvature on the surface. Finally, the examples of these surfaces were given and their corresponding figures were drawn.
Citation: Özgür Boyacıoğlu Kalkan, Süleyman Şenyurt, Mustafa Bilici, Davut Canlı. Sweeping surfaces generated by involutes of a spacelike curve with a timelike binormal in Minkowski 3-space[J]. AIMS Mathematics, 2025, 10(1): 988-1007. doi: 10.3934/math.2025047
In this paper, we studied the geometry of sweeping surfaces generated by the involutes of spacelike curves with a timelike binormal in Minkowski 3-space $ E_1^3 $. First, we investigated the singularity concept, and the mean and Gaussian curvatures of these surfaces. Then, we provided the requirements for the surface to be developable (flat) and minimal. We also determined the sufficient and necessary conditions for the parameter curves of these surfaces to be geodesic and asymptotic. Moreover, we analyzed these surfaces when the parameter curves are lines of curvature on the surface. Finally, the examples of these surfaces were given and their corresponding figures were drawn.
[1] | R. A. A. Baky, Developable surfaces through sweeping surfaces, Iran. Math. Soc., 45 (2019), 951–963. https://doi.org/10.1007/s41980-018-0177-8 doi: 10.1007/s41980-018-0177-8 |
[2] | Y. Zhao, Y. Zhou, J. L. Lowther, C. K. Shene, Cross-sectional design: A tool for computer graphics and computer-aided design courses, In: FIE'99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings, IEEE, 2 (1999), 12B3/1–12B3/6. https://doi.org/10.1109/FIE.1999.841576 |
[3] | K. H. Chang, Product design modeling using CAD/CAE: The computer aided engineering design series, Academic Press, 2014. https://doi.org/10.1016/B978-0-12-398513-2.00003-8 |
[4] | F. Klok, Two moving coordinate frames for sweeping along a 3D trajectory, Comput. Aided Geom., 3 (1986), 217–229. |
[5] | F. Mofarreh, R. A. A. Baky, N. Alluhaibi, Sweeping surfaces with Darboux frame in Euclidean 3-space $E^3$, Aust. J. Math. Anal. Appl., 18 (2021), 1–10. Available from: https://ajmaa.org/searchroot/files/pdf/v18n1/v18i1p4.pdf. |
[6] | M. T. Aldossary, R. A. Baky, Sweeping surface due to rotation minimizing Darboux frame in Euclidean 3-space, AIMS Math., 8 (2023), 447–462. https://doi.org/10.3934/math.2023021 doi: 10.3934/math.2023021 |
[7] | A. A. Jedani, R. A. A. Baky, Sweeping surfaces according to Type-3 Bishop frames in Euclidean 3-Space, Symmetry, 15 (2023), 855. https://doi.org/10.3390/sym15040855 doi: 10.3390/sym15040855 |
[8] | J. Walfare, Curves and surfaces in Minkowski space, Ph. D. thesis, K. U. Leuven, Faculty of Science, Leuven, Belgium, 1995. |
[9] | R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014), 44–107. https://doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497 |
[10] | R. A. A. Baky, M. F. Naghi, Timelike sweeping surfaces and singularities, Int. J. Geom. Methods M., 18 (2021), 2150006. https://doi.org/10.1142/S0219887821500067 doi: 10.1142/S0219887821500067 |
[11] | F. Mofarreh, R. A. A. Baky, M. F. Nagh, Developable surfaces through spacelike sweeping surfaces in Minkowski 3-space, Appl. Math. Inf. Sci., 15 (2021), 263–270. https://doi.org/10.18576/amis/150303 doi: 10.18576/amis/150303 |
[12] | M. P. D. Carmo, Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976. |
[13] | D. Fuchs, Evolutes and involutes of spatial curves, Am. Math. Mon., 120 (2013), 217–231. https://doi.org/10.4169/amer.math.monthly.120.03.217 doi: 10.4169/amer.math.monthly.120.03.217 |
[14] | M. Bilici, On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Inter. Math. Forum, 4 (2009), 1497–1509. |
[15] | M. Bilici, M. Çalışkan, Some new notes on the involutes of the timelike curves in Minkowski 3-Space, Int. J. Contemp. Math. Sci., 6 (2011), 2019–2030. |
[16] | G. Köseoglu, M. Bilici, Involutive sweeping surfaces with Frenet frame in Euclidean 3-space, Heliyon, 9 (2023), e18822. https://doi.org/10.1016/j.heliyon.2023.e18822 doi: 10.1016/j.heliyon.2023.e18822 |
[17] | B. O'Neill, Semi-Riemannian geometry, with applications to relativity, New York: Academic Press, 1983. |
[18] | Y. Li, K. Eren, S. Ersoy, A. Savić, Modified sweeping surfaces in Euclidean 3-space, Axioms, 13 (2024), 800. https://doi.org/10.3390/axioms13110800 doi: 10.3390/axioms13110800 |
[19] | N. M. Althibany, Classification of ruled surfaces family with common characteristic curve in Euclidean 3-space, Turk. J. Sci., 6 (2021), 61–70. |
[20] | M. Önder, T. Kahraman, On rectifying ruled surfaces, Kuwait J. Sci., 47 (2020), 1–11. https://doi.org/10.48129/kjs |
[21] | S. Şenyurt, K. H. Ayvacı, D. Canlı, Family of surfaces with a common special involute and evolute curves, Int. Electron. J. Geom., 15 (2022), 160–174. https://doi.org/10.36890/iejg.932757 doi: 10.36890/iejg.932757 |
[22] | Ö. B. Kalkan, S. Şenyurt, Osculating type ruled surfaces with type-2 bishop frame in $E^3$, Symmetry, 16 (2024), 498. https://doi.org/10.3390/sym16040498 doi: 10.3390/sym16040498 |
[23] | Y. Li, K. Eren, S. Ersoy, On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space, AIMS Math., 8 (2023), 22256–22273. https://doi.org/10.3934/math.20231135 doi: 10.3934/math.20231135 |
[24] | E. Solouma, I. A. Dayel, M. A. Khan, Y. A. A. Lazer, Characterization of imbricate-ruled surfaces via rotation-minimizing Darboux frame in Minkowski 3-space $E_1^3$, AIMS Math., 9 (2024), 13028–13042. https://doi.org/10.3934/math.2024635 doi: 10.3934/math.2024635 |
[25] | F. Güler, Surface pencil with a common timelike adjoint curve, Palest. J. Math., 13 (2024), 302–309. |