Research article

Optimal classes of memory-type estimators of population mean for temporal surveys

  • Received: 05 November 2024 Revised: 06 January 2025 Accepted: 14 January 2025 Published: 17 January 2025
  • MSC : 62D05

  • In this article, we explore how to efficiently estimate the population mean utilizing past and current sample information through exponentially weighted moving average (EWMA) statistics in temporal surveys. We propose some optimal classes of memory-type estimators of population mean for temporal surveys within the framework of simple random sampling (SRS). We derive the expressions for the bias and mean square error (MSE) of the suggested estimators up to first-order approximation. We compare the traditional and newly introduced memory-type estimators and establish the efficiency conditions. Moreover, we conduct a thorough simulation study using real and artificial populations to refine our theoretical outcomes. The simulation results show that studying past and current sample data increase the efficiency of the proposed estimators.

    Citation: Anoop Kumar, Renu Kumari, Abdullah Mohammed Alomair. Optimal classes of memory-type estimators of population mean for temporal surveys[J]. AIMS Mathematics, 2025, 10(1): 1008-1025. doi: 10.3934/math.2025048

    Related Papers:

  • In this article, we explore how to efficiently estimate the population mean utilizing past and current sample information through exponentially weighted moving average (EWMA) statistics in temporal surveys. We propose some optimal classes of memory-type estimators of population mean for temporal surveys within the framework of simple random sampling (SRS). We derive the expressions for the bias and mean square error (MSE) of the suggested estimators up to first-order approximation. We compare the traditional and newly introduced memory-type estimators and establish the efficiency conditions. Moreover, we conduct a thorough simulation study using real and artificial populations to refine our theoretical outcomes. The simulation results show that studying past and current sample data increase the efficiency of the proposed estimators.



    加载中


    [1] W. G. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce, J. Agr. Sci., 30 (1940), 262–275. https://doi.org/10.1017/S0021859600048012 doi: 10.1017/S0021859600048012
    [2] W. G. Cochran, Sampling techniques, Johan Wiley & Sons Inc, 1977.
    [3] S. K. Srivastava, An estimator using auxiliary information in sample serveys, Calcutta Stat. Assoc. Bull., 16 (1967), 121–132.
    [4] D. T. Searls, The utilization of a known coefficient of variation in the estimation procedure, J. Amer. Stat. Assoc., 59 (1964), 1225–1226. https://doi.org/10.1080/01621459.1964.10480765 doi: 10.1080/01621459.1964.10480765
    [5] A. Audu, A. Gidado, N. S. Dauran, S. A. Abdulazeez, M. A. Yunusa, I. Abubakar, Modified robust regression-type estimators with multi-auxiliary variables using non-conventional measures of dispersion, Nig. J. Basic Appl. Sci., 31 (2023), 8–25. https://doi.org/10.4314/njbas.v31i1.2 doi: 10.4314/njbas.v31i1.2
    [6] A. Kumar, S. Bhushan, S. Shukla, W. Emam, Y. Tashkandy, R. K. Gupta, Impact of correlated measurement errors on some efficient classes of estimator, J. Math., 2023 (2023), 8140831. https://doi.org/10.1155/2023/8140831 doi: 10.1155/2023/8140831
    [7] S. Bhushan, A. Kumar, On some efficient logarithmic type estimators under stratified ranked set sampling, Afrika Mat., 35 (2024), 40. https://doi.org/10.1007/s13370-024-01180-x doi: 10.1007/s13370-024-01180-x
    [8] V. K. Yadav, S. Prasad, Neutrosophic estimators for estimating the population mean in survey sampling, Meas. Interdiscip. Res. Perspect., 22 (2024), 373–397. https://doi.org/10.1080/15366367.2023.2267835 doi: 10.1080/15366367.2023.2267835
    [9] M. Noor-ul-Amin, Memory type estimators of population mean using exponentially weighted moving averages for time scaled surveys, Commun. Stat. Theory Methods, 50 (2021), 2747–2758. https://doi.org/10.1080/03610926.2019.1670850 doi: 10.1080/03610926.2019.1670850
    [10] I. Aslam, M. Noor-ul-Amin, U. Yasmeen, M. Hanif, Memory type ratio and product estimators in stratified sampling, J. Reliab. Stat. Stud., 13 (2020), 1–20. https://doi.org/10.13052/jrss0974-8024.1311 doi: 10.13052/jrss0974-8024.1311
    [11] I. Aslam, M. Noor-ul-Amin, M. Hanif, P. Sharma, Memory type ratio and product estimators under ranked-based sampling schemes, Commun. Stat. Theory Methods, 52 (2021), 1155–1177. https://doi.org/10.1080/03610926.2021.1924784 doi: 10.1080/03610926.2021.1924784
    [12] S. Bhushan, A. Kumar, A. I. Al-Omari, G. A. Alomani, Mean estimation for time-based surveys using memory-type logarithmic estimators, Mathematics, 11 (2023), 2125. https://doi.org/10.3390/math11092125 doi: 10.3390/math11092125
    [13] A. Kumar, S. Bhushan, A. M. Alomair, Optimal class of memory type imputation methods for time-based surveys using EWMA statistics, Sci. Rep., 14 (2024), 25740. https://doi.org/10.1038/s41598-024-73518-1 doi: 10.1038/s41598-024-73518-1
    [14] Y. A. Yahya, A. Audu, N. S. Dauran, S. Abdullaahi, Memory-type mean estimators for surveys with non-response: a regression-imputation and EWMA approach, Asian J. Probab. Stat., 26 (2024), 141–154. https://doi.org/10.9734/ajpas/2024/v26i10664 doi: 10.9734/ajpas/2024/v26i10664
    [15] F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297.
    [16] F. Smarandache, Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability, arXiv, 2013. https://doi.org/10.48550/arXiv.1311.7139
    [17] M. Yazdi, E. Zarei, S. Adumene, R. Abbassi, P. Rahnamayiezekavat, Uncertainty modeling in risk assessment of digitalized process systems, In: F. Khan, Methods in chemical process safety, Elsevier, 2022. https://doi.org/10.1016/bs.mcps.2022.04.005
    [18] E. Zarei, M. Yazdi, R. Moradi, A. B. Toroody, Expert judgment and uncertainty in sociotechnical systems analysis, In: E. Zarei, Safety causation analysis in sociotechnical systems: advanced models and techniques, Springer, 2024,487–530. https://doi.org/10.1007/978-3-031-62470-4_18
    [19] S. Roberts, Control chart tests based on geometric moving averages, Technometrics, 1 (1959), 239–250. https://doi.org/10.1080/00401706.1959.10489860 doi: 10.1080/00401706.1959.10489860
    [20] S. Bhushan, A. Kumar, On optimal classes of estimators under ranked set sampling, Commun. Stat. Theory Methods, 51 (2022), 2610–2639. https://doi.org/10.1080/03610926.2020.1777431 doi: 10.1080/03610926.2020.1777431
    [21] S. Singh, S. Horn, An alternative estimator for multi-character surveys, Metrika, 48 (1998), 99–107. https://doi.org/10.1007/PL00020899 doi: 10.1007/PL00020899
    [22] S. Singh, Advanced sampling theory with applications: how Michael selected Amy, Springer, 2003. https://doi.org/10.1007/978-94-007-0789-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(41) PDF downloads(7) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog