In this paper, following [
Citation: Ebner Pineda, Luz Rodriguez, Wilfredo Urbina. Boundedness of Gaussian Bessel potentials and fractional derivatives on variable Gaussian Besov$ - $Lipschitz spaces[J]. AIMS Mathematics, 2025, 10(1): 1026-1042. doi: 10.3934/math.2025049
In this paper, following [
[1] | M. Abidin, M. Marwan, N. Ullah, N. A. Zidan, Well-posedness in variable-exponent function spaces for the three-dimensional micropolar fluid equations, J. Math., 2023. http://dx.doi.org/10.1155/2023/4083997 |
[2] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces foundations and harmonic analysis, Birkhäuser-Springer, Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0548-3 |
[3] | E. Dalmasso, R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integr. Transf. Spec. F., 28 (2017), 403–420. http://dx.doi.org/10.1080/10652469.2017.1296835 doi: 10.1080/10652469.2017.1296835 |
[4] | L. Diening, S. Samko, Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., 10 (2007), 1–18. |
[5] | B. Dong, Z. Fu, J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 61 (2018), 1807–1824. http://dx.doi.org/10.1007/s11425-017-9274-0 doi: 10.1007/s11425-017-9274-0 |
[6] | A. E. Gatto, E. Pineda, W. Urbina, Riesz Potentials, Bessel Potentials and Fractional derivatives on Besov-Lipschitz spaces for the Gaussian measure, Recent Advances and Harmonic Analysis and Applications, Springer Proceedings in Mathematics and Statistics, Springer, New York, 25 (2013), 105–130. http://dx.doi.org/10.1007/978-1-4614-4565-4 |
[7] | J. Moreno, E. Pineda, W. Urbina, Boundedness of the maximal function of the Ornstein-Uhlenbeck semigroup on variable Lebesgue spaces with respect to the Gaussian measure and consequences, Rev. Colomb. Mat., 55 (2021), 21–41. http://dx.doi.org/10.15446/recolma.v55n1.99097 doi: 10.15446/recolma.v55n1.99097 |
[8] | E. Pineda, W. Urbina, Some results on Gaussian Besov-Lipschitz and Gaussian Triebel-Lizorkin spaces, J. Approx. Theor., 161 (2009), 529–564. http://dx.doi.org/10.1016/j.jat.2008.11.010 doi: 10.1016/j.jat.2008.11.010 |
[9] | E. Pineda, L. Rodriguez, W. Urbina, Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure, AIMS Math., 8 (2023), 27128–27150. http://dx.doi.org/10.3934/math.2023138 doi: 10.3934/math.2023138 |
[10] | E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970. http://dx.doi.org/10.1515/9781400883882 |
[11] | W. Urbina, Gaussian harmonic analysis, Springer Monographs in Math., Springer Verlag, Switzerland AG, 2019. http://dx.doi.org/10.1007/978-3-030-05597-4 |
[12] | J. Wu, Q. Wu, Y. Yang, P. Dang, G. Ren, Riemann-Liouville fractional integrals and derivatives on Morrey spaces and applications to a Cauchy-type problem, J. Appl. Anal. Comput., 14 (2024), 1078–1096. http://dx.doi.org/10.11948/20230324 doi: 10.11948/20230324 |