This paper is concerned with a class of high-order fractional stochastic partial differential equations driven by fractional noise. We firstly prove the existence and uniqueness of the mild solution and then study the Hölder continuity of the solution with respect to space and time variables. In addition, we also prove the existence and Gaussian-type estimates for the density of the solution by using the techniques of Malliavin calculus.
Citation: Xiaodong Zhang, Junfeng Liu. Solving a class of high-order fractional stochastic heat equations with fractional noise[J]. AIMS Mathematics, 2022, 7(6): 10625-10650. doi: 10.3934/math.2022593
This paper is concerned with a class of high-order fractional stochastic partial differential equations driven by fractional noise. We firstly prove the existence and uniqueness of the mild solution and then study the Hölder continuity of the solution with respect to space and time variables. In addition, we also prove the existence and Gaussian-type estimates for the density of the solution by using the techniques of Malliavin calculus.
[1] | R. M. Balan, C. A. Tudor, The stochastic heat equation with fractional-colored noise: existence of the solution, Latin Amer. J. Probab. Math. Stat., 4 (2008), 57–87. |
[2] | R. M. Balan, C. A. Tudor, Stochastic heat equation with multiplicative fractional-colored noise, J. Theor. Probab., 23 (2010), 834–870. https://doi.org/10.1007/s10959-009-0237-3 doi: 10.1007/s10959-009-0237-3 |
[3] | L. Bo, Y. Jiang, Y. Wang, On a class of stochastic Anderson models with fractional noises, Stoch. Anal. Appl., 26 (2008), 256–273. https://doi.org/10.1080/07362990701857095 doi: 10.1080/07362990701857095 |
[4] | Y. Chen, Y. Wei, S. Liang, Y. Wang, Indirect model reference adaptive control for a class of fractional order systems, Commun. Nonlinear Sci. Numer. Simulat., 39 (2016), 458–471. https://doi.org/10.1016/j.cnsns.2016.03.016 doi: 10.1016/j.cnsns.2016.03.016 |
[5] | P. L. Chow, Stochastic Partial Differential Equations, Applied Mathematics and Nonlinear Sciences Series, Chapman and Hall/CRC, Boca Raton, FL, 2007. https://doi.org/10.1201/9781420010305 |
[6] | R. C. Dalang, Extending the martingale measure stochastic integral with applications to spatially honogeneous SPDEs, Electron. J. Probab., 4 (1999), 1–29. https://doi.org/10.1214/EJP.v4-43 doi: 10.1214/EJP.v4-43 |
[7] | L. Debbi, M. Dozzi, On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension, Stoch. Proc. Appl., 115 (2005), 1764–1781. https://doi.org/10.1016/j.spa.2005.06.001 doi: 10.1016/j.spa.2005.06.001 |
[8] | L. Debbi. On some properties of a high order fractional differential operator which is not in general selfadjoint, Appl. Math. Sci., 1 (2007), 1325–1339. |
[9] | Y. Hu, D. Nualart, Stochastic heat equation driven by fractional noise and local time, Probab. Theory Relat. Fields, 143 (2009), 285–328. https://doi.org/10.1007/s00440-007-0127-5 doi: 10.1007/s00440-007-0127-5 |
[10] | Y. Hu, D. Nualart, J. Song, Feynman-Kac formula for heat equation driven by fractional white noise, Ann. Probab., 39 (2011), 291–326. https://doi.org/10.1214/10-AOP547 doi: 10.1214/10-AOP547 |
[11] | Y. Hu, F. Lu, D. Nualart, Feynman-Kac formula for the heat equation driven by fractional white noise with Hurst parameter $H < 1/2$, Ann. Probab., 40 (2012), 1041–1068. https://doi.org/10.1214/11-AOP649 doi: 10.1214/11-AOP649 |
[12] | Y. Jiang, T. Wei, X. Zhou, Stochastic generalized Burgers equations by fractional noises, J. Differential Equations, 252 (2012), 1934–1961. https://doi.org/10.1016/j.jde.2011.07.032 doi: 10.1016/j.jde.2011.07.032 |
[13] | J. Liu, L. Yan, Solving a nonlinear fractional stochastic partial differential equation with fractional noise, J. Theor. Probab., 29 (2016), 307–347. https://doi.org/10.1007/s10959-014-0578-4 doi: 10.1007/s10959-014-0578-4 |
[14] | J. Liu, C. A. Tudor, Analysis of the density of the solution to a semilinear SPDE with fractional noise, Stochastics, 88 (2016), 959–979. https://doi.org/10.1080/17442508.2016.1177056 doi: 10.1080/17442508.2016.1177056 |
[15] | T. Nilssen, Quasi-linear stochastic partial differential equations with irregular coefficients: Malliavin regularity of the solutions, Stoch. Partial Differ. Equ.: Anal. Comput., 3 (2015), 339–359. http://dx.doi.org/10.1007/s40072-015-0053-y doi: 10.1007/s40072-015-0053-y |
[16] | I. Nourdin, F. G. Viens, Density formula and concentration inequalities with Malliavin calculus, Electron. J. Probab., 14 (2009), 2287–2309. http://dx.doi.org/10.1214/EJP.v14-707 doi: 10.1214/EJP.v14-707 |
[17] | D. Nualart, The Malliavin calculus and related topics, 2nd ed., Springer, Berlin, 2006. https://doi.org/10.1007/3-540-28329-3 |
[18] | D. Nualart, L. Quer-Sardanyons, Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations, Stochastic Process. Appl., 119 (2009), 3914–3938. https://doi.org/10.1016/j.spa.2009.09.001 doi: 10.1016/j.spa.2009.09.001 |
[19] | D. Nualart, L. Quer-Sardanyons, Optimal Gaussian density estimates for a class of stochastic equations with additive noise, Infin. Dimens. Anal., Quantum Probab. Relat. Top., 14 (2011), 25–34. https://doi.org/10.1142/S0219025711004286 doi: 10.1142/S0219025711004286 |
[20] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their solution ans some of their applications, Academic, San Diego, CA, 1999. |
[21] | B. Xie, Impulsive noise driven one-dimensional higher-order fractional partial differential equations, Stochastic Analysis and Applications, 30 (2012), 122–145. https://doi.org/10.1080/07362994.2012.628917 doi: 10.1080/07362994.2012.628917 |
[22] | J. B. Walsh, An introduction to stochastic partial differential equations, Lect. Notes in Math., 1180 (1986), 266–439, Springer-Verlag, Berlin. https://doi.org/10.1007/BFb0074920 doi: 10.1007/BFb0074920 |
[23] | Y. Wei, P. W. Tse, Z. Yao, Y. Wang, The output feedback control synthesis for a class of singular fractional order systems, ISA Transactions, 69 (2017), 1–9. https://doi.org/10.1016/j.isatra.2017.04.020 doi: 10.1016/j.isatra.2017.04.020 |
[24] | T. Zhang, W. Zheng, SPDEs driven by space-time white noises in high-dimensional: absolute cocntinuity of the law and convergence of solutions, Stoch. Stoch. Rep., 75 (2003), 103–128. https://doi.org/10.1080/1045112031000080833 doi: 10.1080/1045112031000080833 |