In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities.
Citation: Wenbing Sun, Rui Xu. Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals[J]. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620
In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities.
[1] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215. |
[2] | A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958 |
[3] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comput., 73 (2004), 1365–1384. |
[4] | T. S. Du, M. U. Awan, A. Kashuri, S. S. Zhao, Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity, Appl. Anal., 100 (2021), 642–662. doi: 10.1080/00036811.2019.1616083 |
[5] | M. A. Latif, M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and $(\alpha, m)$-preinvex functions, J. Egypt. Math. Soc., 23 (2015), 236–241. doi: 10.1016/j.joems.2014.06.006 |
[6] | J. G. Liao, S. H. Wu, T. S. Du, The Sugeno integral with respect to $\alpha$-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102–114. doi: 10.1016/j.fss.2018.11.008 |
[7] | M. E. Özdemir, Çetin Yıldız, A. O. Akdemir, E. Set, On some inequalities for $s$-convex functions and applications, J. Inequalities Appl., 2013 (2013), 333. doi: 10.1186/1029-242X-2013-333 |
[8] | S. Qaisar, C. J. He, S. Hussain, A generalizations of Simpsons type inequality for differentiable functions using $(\alpha, m)$-convex functions and applications, J. Inequalities Appl., 2013 (2013), 158. doi: 10.1186/1029-242X-2013-158 |
[9] | W. B. Sun, Q. Liu, New Hermite-Hadamard type inequalities for $(\alpha, m)$-convex functions and applications to special means, J. Math. Inequalities, 11 (2017), 383–397. |
[10] | S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequalities, 11 (2017), 241–259. |
[11] | İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat., 43 (2014), 935–942. |
[12] | A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approximation Theory, 115 (2002), 260–288. doi: 10.1006/jath.2001.3658 |
[13] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048 |
[14] | E. Set, İ. İşcan, F. Zehir, On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, Konuralp J. Math., 3 (2015), 42–55. |
[15] | J. R. Wang, C. Zhu, Y. Zhou, New generalized Hermite-Hadamard type inequalities and applications to special means, J. Inequalities Appl., 2013 (2013), 325. doi: 10.1186/1029-242X-2013-325 |
[16] | İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. |
[17] | X. J. Yang, Advanced local fractional calculus and its applications, New York: World Science Publisher, 2012. |
[18] | X. J. Yang, Local fractional functional analysis and its applications, Hong Kong: Asian Academic Publisher, 2011. |
[19] | X. J. Yang, Local fractional integral equations and their applications, Adv. Comput. Sci. Appl., 1 (2012), 234–239. |
[20] | H. X. Mo, X. Sui, D. Y. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal., 2014 (2014), 636751. |
[21] | W. B. Sun, Some local fractional integral inequalities for generalized preinvex functions and applications to numerical quadrature, Fractals, 27 (2019), 1950071. doi: 10.1142/S0218348X19500713 |
[22] | W. B. Sun, Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities, J. Nonlinear Sci. Appl., 11 (2017), 5869–5880. |
[23] | S. Erdena, M. Z. Sarikaya, Generalized Pompeiu type inequalities for local fractional integrals and its applications, Appl. Math. Comput., 274 (2016), 282–291. |
[24] | J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui, A new perspective to study the third order modified KdV equation on fractal set, Fractals, 28 (2020), 2050110, doi: 10.1142/S0218348X20501108 |
[25] | X. J. Yang, F. Gao, H. M. Srivastava, Non-differentiable exact solutions for the nonlinear odes defined on fractal sets, Fractals, 25 (2017), 1740002. doi: 10.1142/S0218348X17400023 |
[26] | X. J. Yang, J. A. Tenreiro, D. Baleanu, Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, 25 (2017), 1740006. doi: 10.1142/S0218348X17400060 |
[27] | M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Am. Math. Soc., 145 (2017), 1527–1538. |
[28] | K. J. Wang, Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative, Fractals, 29 (2021), 2150044. doi: 10.1142/S0218348X21500444 |
[29] | K. L. Wang, S. W. Yao, Y. P. Liu, L. N. Zhang, A fractal variational principle for the telegraph equation with fractal derivatives, Fractals, 28 (2020), 2050058. doi: 10.1142/S0218348X20500589 |
[30] | G. Chen, H. M. Srivastava, P. Wang, W. Wei, Some further generalizations of Hölder's inequality and related results on fractal space, Abstr. Appl. Anal., 2014 (2014), 832802. |