The appreciation of inequalities in convexity is critical for fractional calculus and its application in a variety of fields. In this paper, we provide a unique analysis based on Hermite-Hadamard inequalities in the context of newly defined class of convexity which is known as left and right harmonically $ {h} $-convex IVF (left and right $ \mathcal{H}$-$ {h} $-convex IVF), as well as associated integral and fractional inequalities, are addressed by the suggested technique. Because of its intriguing character in the numerical sciences, there is a strong link between fractional operators and convexity. There have also been several exceptional circumstances studied, and numerous well-known Hermite-Hadamard inequalities have been derived for left and right $ \mathcal{H}$-$ {h} $-convex IVF. Moreover, some applications are also presented in terms of special cases which are discussed in this study. The plan's outcomes demonstrate that the approach may be implemented immediately and is computationally simple and precise. We believe, our findings, generalize certain well-known new and classical harmonically convexity discoveries from the literature.
Citation: Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities[J]. AIMS Mathematics, 2022, 7(8): 15497-15519. doi: 10.3934/math.2022849
The appreciation of inequalities in convexity is critical for fractional calculus and its application in a variety of fields. In this paper, we provide a unique analysis based on Hermite-Hadamard inequalities in the context of newly defined class of convexity which is known as left and right harmonically $ {h} $-convex IVF (left and right $ \mathcal{H}$-$ {h} $-convex IVF), as well as associated integral and fractional inequalities, are addressed by the suggested technique. Because of its intriguing character in the numerical sciences, there is a strong link between fractional operators and convexity. There have also been several exceptional circumstances studied, and numerous well-known Hermite-Hadamard inequalities have been derived for left and right $ \mathcal{H}$-$ {h} $-convex IVF. Moreover, some applications are also presented in terms of special cases which are discussed in this study. The plan's outcomes demonstrate that the approach may be implemented immediately and is computationally simple and precise. We believe, our findings, generalize certain well-known new and classical harmonically convexity discoveries from the literature.
[1] | J. Wang, M. Feckan, Fractional Hermite-Hadamard Inequalities, de Gruyter, Berlin, (2018). https://doi.org/10.1515/9783110523621 doi: 10.1515/9783110523621 |
[2] | I. Işcan, Hermite-Hadamard's inequalities for preinvex functions via fractional integrals and related fractional inequalities, arXiv preprint arXiv: 1204.0272, 2012. https://doi.org/10.12691/ajma-1-3-2 |
[3] | J. E. Macías-Díaz, M. B. Khan, M. A. Noor, A. M. Abd Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236 |
[4] | M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon Pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204 |
[5] | S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. https://doi.org/10.1006/jmaa.1995.1057 doi: 10.1006/jmaa.1995.1057 |
[6] | N. Sharma, S. K. Mishra, A. A. Hamdi, Weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions, Int. J. Adv. Appl. Sci., 7 (2020), 113–118. https://doi.org/10.21833/ijaas.2020.03.012 doi: 10.21833/ijaas.2020.03.012 |
[7] | S. vHilger, Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten, Universtat Wurzburg, Wurzburg, (1988). https://doi.org/10.4236/ce.2018.916219 |
[8] | R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, (1966). |
[9] | R. Agarwal, D. O'Regan, S. Saker, Dynamic Inequalities on Time Scales, Springer, Berlin, (2014). https://doi.org/10.1007/978-3-319-11002-8 |
[10] | H. M. Srivastava, K. L. Tseng, S. J. Tseng, J. C. Lo, Some weighted Opial type inequalities on time scales, Taiwan. J. Math., 14 (2010), 107–122. https://doi.org/10.11650/twjm/1500405730 doi: 10.11650/twjm/1500405730 |
[11] | H. M. Srivastaa, K. L. Tseng, S. J. Tseng, J. C. Lo, Some generalization of Maroni's inequality on time scales, Math. Inequal. Appl., 14 (2011), 469–480. https://doi.org/10.7153/mia-14-39 doi: 10.7153/mia-14-39 |
[12] | W. Wei, H. M. Srivastava, Y. Zhang, L. Wang, P. Shan, T. Zhang, A local fractional integral inequality on fractal space analogous to Anderson's inequality, Abstr. Appl. Anal., 2014 (2014), 1–7. https://doi.org/10.1155/2014/797561 doi: 10.1155/2014/797561 |
[13] | T. Tunç, M. Z. Sarikaya, H. M. Srivastava, Some generalized Steffensen's inequalities via a new identity for local fractional integrals, Int. J. Anal. Appl., 13 (2017), 98–107. |
[14] | H. M. Srivastava, Z. H. Zhang, Y. D. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 (2011), 2709–2717. https://doi.org/10.1016/j.mcm.2011.06.057 doi: 10.1016/j.mcm.2011.06.057 |
[15] | A. K. Bhurjee, G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273–288. https://doi.org/10.1007/s00186-012-0399-0 doi: 10.1007/s00186-012-0399-0 |
[16] | V. Lupulescu, Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Inf. Sci., 248 (2013), 50–67. https://doi.org/10.1016/j.ins.2013.06.004 doi: 10.1016/j.ins.2013.06.004 |
[17] | Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6 |
[18] | P. Roy, G. Panda, Expansion of generalized Hukuhara differentiable interval-valued function, New Math. Nat. Comput., 15 (2019), 553–570. https://doi.org/10.1142/S1793005719500327 doi: 10.1142/S1793005719500327 |
[19] | I. Işcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. |
[20] | M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77 (2015), 5–16. https://doi.org/10.1155/2019/2394021 doi: 10.1155/2019/2394021 |
[21] | M. B. Khan, M. A. Noor, T. Abdeljawad, A. A. A. Mousa, B. Abdalla, S. M. Alghamdi, LR-preinvex interval-valued functions and Riemann-Liouville fractional integral inequalities, Fractal Fract., 5 (2022), 243. https://doi.org/10.3390/fractalfract5040243 doi: 10.3390/fractalfract5040243 |
[22] | M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-Log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math., 15 (2021), 459–470. https://doi.org/10.18576/amis/150408 doi: 10.18576/amis/150408 |
[23] | V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005 |
[24] | Y. An, G. Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval (h1, h2)-convex functions, Mathematics, 7 (2019), 436. https://doi.org/10.3390/math7050436 doi: 10.3390/math7050436 |
[25] | D. F. Zhao, T. Q. An, G. J. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions, Math. Inequal. Appl., 23 (2020), 95–105. https://doi.org/10.7153/mia-2020-23-08 doi: 10.7153/mia-2020-23-08 |
[26] | H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 148 (2019), 705–718. https://doi.org/10.1515/math-2021-0067 doi: 10.1515/math-2021-0067 |
[27] | M. B. Khan, M. A. Noor, K. I. Noor, K. Nisar, K. I. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x |
[28] | M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 5 (2007), 126–131. |
[29] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, Journal De MathématiquesPpures Et Appliquées, 5 (1893), 171–215. http://eudml.org/doc/234668 |
[30] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 1–82. |
[31] | B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (2003), 1–9. |
[32] | M. A. Noor, Fuzzy preinvex functions, Fuzzy Set. Syst., 4 (1994), 95–104. https://doi.org/10.1016/0165-0114(94)90011-6 doi: 10.1016/0165-0114(94)90011-6 |
[33] | M. A. Noor, K. I. Noor, On strongly generalized preinvex functions, J. Inequalities Pure Appl. Math., 6 (2005), 102. |
[34] | D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Set. Syst., 2020 (2020), 1–27. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003 |
[35] | M. B. Khan, M. A. Noor, M. M. Al‐Shomrani, L. Abdullah, Some novel inequalities for LR‐h‐convex interval‐valued functions by means of pseudo‐order relation, Math. Methods Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855 |
[36] | F. Chen, Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121–128. https://doi.org/10.1016/j.amc.2015.06.051 doi: 10.1016/j.amc.2015.06.051 |
[37] | M. B. Khan, P. O. Mohammed, M. A. Noor, K. Abuahalnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580. https://doi.org/10.3934/mbe.2021325 doi: 10.3934/mbe.2021325 |
[38] | M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001 |
[39] | P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex. Intell. Syst., 2021 (2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w |
[40] | G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001 |
[41] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 6–20. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8 |
[42] | M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063 |
[43] | M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673 |
[44] | M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard–Fejér Type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006 |
[45] | M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, M. S. Soliman, Fractional calculus for convex functions in interval-valued settings and inequalities, Symmetry, 14 (2022), 341. https://doi.org/10.3390/sym14020341 doi: 10.3390/sym14020341 |
[46] | M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized Pre-Invex functions via Fuzzy-Interval-Valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083 |
[47] | M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some fuzzy Riemann-Liouville fractional integral inequalities for preinvex fuzzy interval-valued functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313 |
[48] | M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611 |
[49] | M. B. Khan, G. Santos-García, H. G. Zaini, S. Treanțǎ, M. S. Soliman, Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional calculus, Mathematics, 10 (2022), 534. https://doi.org/10.3390/math10040534 doi: 10.3390/math10040534 |
[50] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856–1870. |
[51] | S. Treanţă, S. Jha, M. B. Khan, T. Saeed, On some constrained optimization problems, Mathematics, 10 (2022), 818. https://doi.org/10.2991/ijcis.d.210616.001 doi: 10.2991/ijcis.d.210616.001 |
[52] | S. Treanţă, M. B. Khan, T. Saeed, Optimality for control problem with PDEs of second-order as constraints, Mathematics, 10 (2022), 977. https://doi.org/10.3390/math10060977 doi: 10.3390/math10060977 |
[53] | M. B. Khan, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178 |
[54] | M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new estimates on coordinates of left and right convex interval-valued functions based on pseudo order relation, Symmetry, 14 (2022), 473. https://doi.org/10.3390/sym14030473 doi: 10.3390/sym14030473 |
[55] | S. Treanţă, M. B. Khan, T. Saeed, On some variational inequalities involving second-order partial derivatives, Fractal Fract., 6 (2022), 236. https://doi.org/10.3390/fractalfract6050236 doi: 10.3390/fractalfract6050236 |
[56] | M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, AIMS Math., 7 (2022), 10454–10482. https://doi.org/10.3934/math.2022583 doi: 10.3934/math.2022583 |
[57] | M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. https://doi.org/10.3934/math.2022024 doi: 10.3934/math.2022024 |
[58] | H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022 |
[59] | H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos, Soliton. Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432 |
[60] | C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. https://doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809 |
[61] | Y. Cheng, H. Zhang, W. Zhang, H. Zhang, Novel algebraic criteria on global Mittag-Leffler synchronization for FOINNs with the Caputo derivative and delay, J. Appl. Math. Comput., 2021 (2021), 1–18. https://doi.org/10.1007/s12190-021-01672-0 doi: 10.1007/s12190-021-01672-0 |
[62] | Y. Tian, Z. Wang, A new multiple integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 105 (2020), 106325. https://doi.org/10.1016/j.aml.2020.106325 doi: 10.1016/j.aml.2020.106325 |
[63] | Y. Tian, Z. Wang, Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 120 (2021), 107252. https://doi.org/10.1016/j.aml.2021.107252 doi: 10.1016/j.aml.2021.107252 |