Research article Special Issues

On the solutions of certain fractional kinetic matrix equations involving Hadamard fractional integrals

  • Received: 10 April 2022 Revised: 08 June 2022 Accepted: 09 June 2022 Published: 22 June 2022
  • MSC : 33B15, 33C05, 33C20, 34A05

  • Currently, matrix fractional differential equations have several applications in diverse fields, including mathematical analysis, control systems, economics, optimization theory, physics, astrophysics and engineering. In this line of research, we introduce generalized fractional kinetic equations including extended $ k $-Hurwitz-Lerch zeta-matrix functions. By applying the Hadamard fractional integral properties and via the Mellin integral transform, we present the solution of fractional kinetic matrix equations involving families of Hurwitz-Lerch zeta matrix functions. In addition, we consider a number of specific instances of our key results.

    Citation: Mohamed Akel, Muajebah Hidan, Salah Boulaaras, Mohamed Abdalla. On the solutions of certain fractional kinetic matrix equations involving Hadamard fractional integrals[J]. AIMS Mathematics, 2022, 7(8): 15520-15531. doi: 10.3934/math.2022850

    Related Papers:

  • Currently, matrix fractional differential equations have several applications in diverse fields, including mathematical analysis, control systems, economics, optimization theory, physics, astrophysics and engineering. In this line of research, we introduce generalized fractional kinetic equations including extended $ k $-Hurwitz-Lerch zeta-matrix functions. By applying the Hadamard fractional integral properties and via the Mellin integral transform, we present the solution of fractional kinetic matrix equations involving families of Hurwitz-Lerch zeta matrix functions. In addition, we consider a number of specific instances of our key results.



    加载中


    [1] J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor, Journal de Mathématiques Pures et Appliquées, 4 (1892), 101–186.
    [2] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5
    [3] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. https://doi.org/10.1016/S0022-247X(02)00001-X doi: 10.1016/S0022-247X(02)00001-X
    [4] S. Pooseh, R. Almeida, D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative, Numer. Funct. Anal. Opt., 33 (2012), 301–319. https://doi.org/10.1080/01630563.2011.647197 doi: 10.1080/01630563.2011.647197
    [5] G. Farid, G. M. Habibullah, An extension of Hadamard fractional integral, International Journal of Mathematical Analysis, 9 (2015), 471–482. http://doi.org/10.12988/ijma.2015.5118 doi: 10.12988/ijma.2015.5118
    [6] M. K. Azam, F. Zaffar, M. A. Rehman, F. Ahmad, S. Qaisar, Study of extended $k-$Hadamard fractional integral, J. Appl. Environ. Biol. Sci., 7 (2017), 180–188.
    [7] S. Abbas, M. Benchohra, Y. Zhou, On a system of Volterra type Hadamard fractional integral equations in Fréchet spaces, Discrete Dyn. Nat. Soc., 2018 (2018), 1246475. https://doi.org/10.1155/2018/1246475 doi: 10.1155/2018/1246475
    [8] A. Boutiara, M. Benbachir, K. Guerbati, Boundary value problem for nonlinear Caputo-Hadamard fractional differential equation with Hadamard fractional integral and anti-periodic conditions, Facta Univ. Ser. Math., 36 (2021), 735–748. https://doi.org/10.22190/FUMI191022054B doi: 10.22190/FUMI191022054B
    [9] W. F. S. Ahmed, A. Y. A. Salamoon, D. D. Pawar, Solution of fractional Kinetic equation for Hadamard type fractional integral via Mellin transform, Gulf Journal of Mathematics, 12 (2022), 15–27.
    [10] K. Diethem, The analysis of fractional differential equations, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [11] S. Abbas, M. Benchohra, G. M. N. Guerekata, Topics in fractional differential equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4036-9
    [12] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [13] R. K. Saxena, A. M. Mathai, H. J. Haubold, On generalized fractional kinetic equations, Physica A, 344 (2004), 657–664. https://doi.org/10.1016/j.physa.2004.06.048 doi: 10.1016/j.physa.2004.06.048
    [14] R. K. Saxena, S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199 (2008), 504–511. https://doi.org/10.1016/j.amc.2007.10.005 doi: 10.1016/j.amc.2007.10.005
    [15] V. N. Kolokoltsov, M. Troeva, A new approach to fractional Kinetic evolutions, Fractal Fract., 6 (2022), 49. https://doi.org/10.3390/fractalfract6020049 doi: 10.3390/fractalfract6020049
    [16] O. Khan, N. Khan, J. Choi, K. S. Nisar, A type of fractional Kinetic equations associated with the $(p, q)-$ extented $t-$ hypergeomtric and confluent hypergeomtric functions, Nonlinear Functional Analysis and Applications, 26 (2021), 381–392. https://doi.org/10.22771/nfaa.2021.26.02.10 doi: 10.22771/nfaa.2021.26.02.10
    [17] M. Samraiz, M. Umer, A. Kashuri, T. Abdeljawad, S. Iqbal, N. Mlaiki, On Weighted $(k, s)$-Riemann-Liouville fractional operators and solution of fractional Kinetic equation, Fractal Fract., 5 (2021), 118. https://doi.org/10.3390/fractalfract5030118 doi: 10.3390/fractalfract5030118
    [18] O. Yagci, R. Sahin, Solutions of fractional kinetic equations involving generalized Hurwitz-Lerch Zeta functions using Sumudu transform, Commun. Fac. Sci. Univ., 70 (2021), 678–689. https://doi.org/10.31801/cfsuasmas.797257 doi: 10.31801/cfsuasmas.797257
    [19] M. Hidan, M. Akel, H. Abd-Elmageed, M. Abdalla, Solution of fractional kinetic equations involving extended $(k, t)-$Gauss hypergeometric matrix functions, AIMS Mathematics, 7 (2022), 14474–14491. https://doi.org/10.3934/math.2022798 doi: 10.3934/math.2022798
    [20] M. Abdalla, M. Akel, Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal Fract., 6 (2022), 305. https://doi.org/10.3390/fractalfract6060305 doi: 10.3390/fractalfract6060305
    [21] A. Kiliçman, W. A. Ahmood, On matrix fractional differential equations, Adv. Mech. Eng., 9 (2017), 1–7. https://doi.org/10.1177/1687814016683359 doi: 10.1177/1687814016683359
    [22] Z. Al-Zuhiri, Z. Al-Zhour, K. Jaber, The exact solutions of such coupled linear matrix fractional differential equations of diagonal unknown matrices by using Hadamard product, J. Appl. Math. Phys., 4 (2016), 432–442. https://doi.org/10.4236/jamp.2016.42049 doi: 10.4236/jamp.2016.42049
    [23] K. Maleknejad, K. Nouri, L. Torkzadeh, Operational matrix of fractional integration based on the Shifted second kind Chebyshev polynomials for solving fractional differential equations, Mediterr. J. Math., 13 (2016), 1377–1390. https://doi.org/10.1007/s00009-015-0563-x doi: 10.1007/s00009-015-0563-x
    [24] R. Garrappa, M. Popolizio, On the use of matrix functions for fractional partial differential equations, Math. Comput. Simulat, 25 (2011), 1045–1056. https://doi.org/10.1016/j.matcom.2010.10.009 doi: 10.1016/j.matcom.2010.10.009
    [25] M. Abdalla, Fractional operators for the Wright hypergeometric matrix functions, Adv. Differ. Equ., 2020 (2020), 246. https://doi.org/10.1186/s13662-020-02704-y doi: 10.1186/s13662-020-02704-y
    [26] M. Abdalla, M. Akel, J. Choi, Certain matrix Riemann-Liouville fractional integrals associated with functions involving generalized Bessel matrix polynomials, Symmetry, 13 (2021), 622. https://doi.org/10.3390/sym13040622 doi: 10.3390/sym13040622
    [27] G. Khammash, P. Agarwal, J. Choi, Extended k-gamma and k-beta functions of matrix arguments, Mathematics, 8 (2020), 1715. https://doi.org/10.3390/math8101715 doi: 10.3390/math8101715
    [28] N. Higham, L. Lin, An improved Schur–Padé algorithm for fractional powers of a matrix and their Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013), 1341–1360. https://doi.org/10.1137/130906118 doi: 10.1137/130906118
    [29] R. Dwivedi, V. Sahai, On certain properties and expansions of zeta matrix function, digamma matrix function and polygamma matrix function, Quaest. Math., 43 (2020), 97–105. https://doi.org/10.2989/16073606.2018.1539046 doi: 10.2989/16073606.2018.1539046
    [30] M. Hidan, M. Akel, H. Abd-Elmageed, M. Abdalla, Some families of the Hurwitz-Lerch $\zeta-$ matrix functions and associated fractional kinetic equations, Fractals, 2022, in press.
    [31] J. Choi, R. K. Parmar, R. K. Raina, A further extension of the generalized Hurwitz-Lerch zeta function, Far East Journal of Mathematical Sciences, 101 (2017), 2317–2332. https://doi.org/10.17654/MS101102317 doi: 10.17654/MS101102317
    [32] M. Garg, K. Jain, S. L. Kalla, A further study of general Hurwitz-Lerch zeta function, Algebras Groups Geom., 25 (2008), 311–319.
    [33] J. Choi, R. K. Parmar, R. K. Raina, Extension of generalized Hurwitz-Lerch zeta function and associated properties, Kyungpook Math. J., 57 (2017), 393–400. https://doi.org/10.5666/KMJ.2017.57.3.393 doi: 10.5666/KMJ.2017.57.3.393
    [34] V. Kumar, On the generalized Hurwitz-Lerch zeta function and generalized Lambert function, Journal of Classical Analysis, 17 (2021), 55–67. https://doi:10.7153/jca-2021-17-05 doi: 10.7153/jca-2021-17-05
    [35] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [36] D. R. Mathur, S. Poonia, Application of the Mellin typt integral transform in the Range $[0, 1/a]$, International Journal of Mathematical Archive, 3 (2012), 2380–2385.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1646) PDF downloads(64) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog