Research article Special Issues

Theoretical and numerical analysis of solutions of some systems of nonlinear difference equations

  • Received: 19 April 2022 Revised: 05 June 2022 Accepted: 09 June 2022 Published: 22 June 2022
  • MSC : 39A10

  • In this paper, we obtain the form of the solutions of the following rational systems of difference equations

    xn+1=yn1znzn±xn2,yn+1=zn1xnxn±yn2, zn+1=xn1ynyn±zn2,

    with initial values are non-zero real numbers.

    Citation: E. M. Elsayed, Q. Din, N. A. Bukhary. Theoretical and numerical analysis of solutions of some systems of nonlinear difference equations[J]. AIMS Mathematics, 2022, 7(8): 15532-15549. doi: 10.3934/math.2022851

    Related Papers:

    [1] Ahmed Ghezal, Mohamed Balegh, Imane Zemmouri . Solutions and local stability of the Jacobsthal system of difference equations. AIMS Mathematics, 2024, 9(2): 3576-3591. doi: 10.3934/math.2024175
    [2] Hashem Althagafi, Ahmed Ghezal . Solving a system of nonlinear difference equations with bilinear dynamics. AIMS Mathematics, 2024, 9(12): 34067-34089. doi: 10.3934/math.20241624
    [3] M. T. Alharthi . Correction: On the solutions of some systems of rational difference equations. AIMS Mathematics, 2025, 10(2): 2277-2278. doi: 10.3934/math.2025105
    [4] M. T. Alharthi . On the solutions of some systems of rational difference equations. AIMS Mathematics, 2024, 9(11): 30320-30347. doi: 10.3934/math.20241463
    [5] Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893
    [6] Shulan Kong, Chengbin Wang, Yawen Sun . A recursive filter for a class of two-dimensional nonlinear stochastic systems. AIMS Mathematics, 2025, 10(1): 1741-1756. doi: 10.3934/math.2025079
    [7] Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974
    [8] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065
    [9] Ibraheem M. Alsulami, E. M. Elsayed . On a class of nonlinear rational systems of difference equations. AIMS Mathematics, 2023, 8(7): 15466-15485. doi: 10.3934/math.2023789
    [10] Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470
  • In this paper, we obtain the form of the solutions of the following rational systems of difference equations

    xn+1=yn1znzn±xn2,yn+1=zn1xnxn±yn2, zn+1=xn1ynyn±zn2,

    with initial values are non-zero real numbers.



    This paper is devoted to study the expressions forms of the solutions and periodic nature of the following third-order rational systems of difference equations

    xn+1=yn1znzn±xn2,yn+1=zn1xnxn±yn2, zn+1=xn1ynyn±zn2,

    with initial conditions are non-zero real numbers.

    In the recent years, there has been great concern in studying the systems of difference equations. One of the most important reasons for this is a exigency for some mechanization which can be used in discussing equations emerge in mathematical models characterizing real life situations in economic, genetics, probability theory, psychology, population biology and so on.

    Difference equations display naturally as discrete peer and as numerical solutions of differential equations having more applications in ecology, biology, physics, economy, and so forth. For all that the difference equations are quite simple in expressions, it is frequently difficult to realize completely the dynamics of their solutions see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and the related references therein.

    There are some papers dealed with the difference equations systems, for example, The periodic nature of the solutions of the nonlinear difference equations system

    An+1=1Cn,Bn+1=BnAn1Bn1,Cn+1=1An1,

    has been studied by Cinar in [7].

    Almatrafi [3] determined the analytical solutions of the following systems of rational recursive equations

    xn+1=xn1yn3yn1(±1±xn1yn3),yn+1=yn1xn3xn1(±1±yn1xn3).

    In [20], Khaliq and Shoaib studied the local and global asymptotic behavior of non-negative equilibrium points of a three-dimensional system of two order rational difference equations

    xn+1=xn1ε+xn1yn1zn1,yn+1=yn1ζ+xn1yn1zn1, zn+1=zn1η+xn1yn1zn1.

    In [9], Elabbasy et al. obtained the form of the solutions of some cases of the following system of difference equations

    xn+1=a1+a2yna3zn+a4xn1zn, yn+1=b1zn1+b2znb3xnyn+b4xnyn1,zn+1=c1zn1+c2znc3xn1yn1+c4xn1yn+c5xnyn.

    In [12], Elsayed et al. have got the solutions of the systems of rational higher order difference equations

    An+1=1AnpBnp,Bn+1=AnpBnpAnqBnq,

    and

    An+1=1AnpBnpCnp,Bn+1=AnpBnpCnpAnqBnqCnq,Cn+1=AnqBnqCnqAnrBnrCnr.

    Kurbanli [25,26] investigated the behavior of the solutions of the following systems

    An+1=An1An1Bn1,Bn+1=Bn1Bn1An1,  Cn+1=1CnBn,An+1=An1An1Bn1,Bn+1=Bn1Bn1An1,  Cn+1=Cn1Cn1Bn1.

    In [32], Yalçınkaya has obtained the conditions for the global asymptotically stable of the system

    An+1=BnAn1+aBn+An1,Bn+1=AnBn1+aAn+Bn1.

    Zhang et al. [39] investigated the persistence, boundedness and the global asymptotically stable of the solutions of the following system

    Rn=A+1Qnp,   Qn=A+Qn1RnrQns.

    Similar to difference equations and systems were studied see [21,22,23,24,27,28,29,30,31,32,33,34,35,36,37,38].

    In this section, we obtain the expressions form of the solutions of the following three dimension system of difference equations

    xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, (1)

    where nN0 and the initial conditions are non-zero real numbers.

    Theorem 1. We assume that {xn,yn,zn} are solutions of system (1).Then

    x6n2=ak3nn1i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n1=bf3nn1i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n=c3n+1n1i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n+1=ek3n+1(a+k)n1i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),
    x6n+2=f3n+2(g+2f)n1i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n+3=hc3n+2(d+c)(d+3c)n1i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c),
    y6n2=dc3nn1i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n1=ek3nn1i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n=f3n+1n1i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),y6n+1=hc3n+1(d+c)n1i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n+2=k3n+2(a+2k)n1i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n+3=bf3n+2(g+f)(g+3f)n1i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f),

    and

    z6n2=gf3nn1i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n1=hc3nn1i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n=k3n+1n1i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n+1=bf3n+1(g+f)n1i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),
    z6n+2=c3n+2(d+2c)n1i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n+3=ek3n+2(a+k)(a+3k)n1i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k),

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Proof. For n=0 the result holds. Now assume that n>1 and that our assumption holds for n1, that is,

    x6n8=ak3n3n2i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n7=bf3n3n2i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n6=c3n2n2i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n5=ek3n2(a+k)n2i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),x6n4=f3n1(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n3=hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c),
    y6n8=dc3n3n2i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n7=ek3n3n2i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n6=f3n2n2i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),
    y6n5=hc3n2(d+c)n2i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n4=k3n1(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n3=bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f),

    and

    z6n8=gf3n3n2i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n7=hc3n3n2i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n6=k3n2n2i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n5=bf3n2(g+f)n2i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),z6n4=c3n1(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n3=ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k).

    It follows from Eq (1) that

    x6n2=y6n4z6n3z6n3+x6n5=(k3n1(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k)                            )(ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)                            )(ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)                            )+(ek3n2(a+k)n2i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k)                            )=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))(a+3k)n2i=0(a+(6i+9)k)[(k(a+3k)n2i=0(a+(6i+9)k))+(1n2i=0(a+(6i+3)k))]=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+((a+3k)n2i=0(a+(6i+9)k)n2i=0(a+(6i+3)k))]=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+(a+(6n3)k)]=ak3na(a+2k)(a+(6n2)k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k).

    Then we see that

    x6n2=k3nn1i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k).

    Also, we see from Eq (1) that

    y6n2=z6n4x6n3x6n3+y6n5=(c3n1(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c)                         )(hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)                         )(hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)                         )+(hc3n2(d+c)n2i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c)                         )=(c3n(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))(d+3c)n2i=0(d+(6i+9)c)[(c(d+3c)n2i=0(d+(6i+9)c))+(1n2i=0(d+(6i+3)c))]=(c3n(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))[c+d+(6n3)c]=c3n[d+(6n2)c](d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c).

    Then

    y6n2=dc3nn1i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c).

    Finally from Eq (1), we see that

    z6n2=x6n4y6n3y6n3+z6n5=(f3n1(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f)                            )(bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f)                            )(bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f)                            )+(bf3n2(g+f)n2i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f)                            )=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))(g+3f)n2i=0(g+(6i+9)f)[(f(g+3f)n2i=0(g+(6i+9)f))+(1n2i=0(g+(6i+3)f))]=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+((g+3f)n2i=0(g+(6i+9)f)n2i=0(g+(6i+3)f))]=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+(g+(6n3)f)]=f3n(g+(6n2)f)(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f).

    Thus

    z3n2=gf3nn1i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f).

    By similar way, one can show the other relations. This completes the proof.

    Lemma 1. Let {xn,yn,zn} be a positive solution of system (1), then all solution of (1) is bounded and approaching to zero.

    Proof. It follows from Eq (1) that

    xn+1=yn1znzn+xn2yn1,     yn+1=zn1xnxn+yn2zn1,zn+1=xn1ynyn+zn2xn1,

    we see that

    xn+4yn+2,     yn+2zn,  znxn2,    xn+4<xn2,yn+4zn+2,   zn+2xn,   xnyn2,      yn+4<yn2,zn+4xn+2,   xn+2yn,   ynzn2,      zn+4<zn2,

    Then all subsequences of {xn,yn,zn} (i.e., for {xn} are {x6n2}, {x6n1}, {x6n}, {x6n+1}, {x6n+2}, {x6n+3}  are decreasing and at that time are bounded from above by K,L and M since K=max{x2,x1,x0,x1,x2,x3}, L=max{y2,y1,y0,y1,y2,y3} and M=max{z2,z1,z0,z1,z2,z3}.

    Example 1. We assume an interesting numerical example for the system (1) with x2=.22,x1=.4, x0=.12,y2=.62, y1=4, y0=.3,z2=.4,z1=.53 andz0=2. (See Figure 1).

    Figure 1.  This figure shows the behavior of the solutions of the system (1) with the initial conditions x2=.22,x1=.4, x0=.12,y2=.62, y1=4, y0=.3,z2=.4,z1=.53 andz0=2. (We see from this figure that all solutions converges to zero).

    In this section, we get the solution's form of the following system of difference equations

    xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, (2)

    where nN0 and the initial values are non-zero real numbers with x2±z0,2z0, z2y0,2y0,3y0 and y22x0,±x0.

    Theorem 2. Assume that {xn,yn,zn} are solutions of (2). Then for n=0,1,2,...,

    x6n2=(1)nk3na2n1(a+2k)n, x6n1=(1)nbf3n(fg)2n(3fg)n, x6n=(1)nc3n+1d2n(2cd)n,x6n+1=ek3n+1(ak)n(a+k)2n+1, x6n+2=(1)nf3n+2gn(2fg)2n+1, x6n+3=(1)nhc3n+2(cd)2n+1(c+d)n+1,
    y6n2=(1)nc3nd2n1(2cd)n, y6n1=ek3n(ak)n(a+k)2n, y6n=(1)nf3n+1gn(2fg)2n,y6n+1=(1)nhc3n+1(cd)2n(c+d)n+1, y6n+2=(1)nk3n+2a2n(a+2k)n+1, y6n+3=(1)nbf3n+2(fg)2n+1(3fg)n+1,

    and

    z6n2=(1)nf3ngn1(2fg)2n, z6n1=(1)nhc3n(cd)2n(c+d)n, z6n=(1)nk3n+1a2n(a+2k)n,z6n+1=(1)nbf3n+1(fg)2n+1(3fg)n, z6n+2=(1)n+1c3n+2d2n+1(2cd)n, z6n+3=ek3n+2(ak)n(a+k)2n+2,

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Proof. The result is true for n=0. Now suppose that n>0 and that our claim verified for n1. That is,

    x6n8=(1)n1k3n3a2n3(a+2k)n1, x6n7=(1)n1bf3n3(fg)2n2(3fg)n1, x6n6=(1)n1c3n2d2n2(2cd)n1,x6n5=ek3n2(ak)n1(a+k)2n1, x6n4=(1)n1f3n1gn1(2fg)2n1, x6n3=(1)n1hc3n1(cd)2n1(c+d)n,
    y6n8=(1)n1c3n3d2n3(2cd)n1, y6n7=ek3n3(ak)n1(a+k)2n2, y6n6=(1)n1f3n2gn1(2fg)2n2,y6n5=(1)n1hc3n2(cd)2n2(c+d)n, y6n4=(1)n1k3n1a2n2(a+2k)n, y6n3=(1)n1bf3n1(fg)2n1(3fg)n,

    and

    z6n8=(1)n1f3n3gn2(2fg)2n2, z6n7=(1)n1hc3n3(cd)2n2(c+d)n1, z6n6=(1)n1k3n2a2n2(a+2k)n1,z6n5=(1)n1bf3n2(fg)2n1(3fg)n1, z6n4=(1)nc3n1d2n1(2cd)n1, z6n3=ek3n1(ak)n1(a+k)2n.

    Now from Eq (2), it follows that

    x6n2=y6n4z6n3z6n3+x6n5=((1)n1k3n1a2n2(a+2k)n)(ek3n1(ak)n1(a+k)2n)(ek3n1(ak)n1(a+k)2n)+(ek3n2(ak)n1(a+k)2n1)=((1)nk3na2n2(a+2k)n)(k+a+k)=(1)nk3na2n1(a+2k)n,y6n2=z6n4x6n3x6n3+y6n5=((1)nc3n1d2n1(2cd)n1)((1)n1hc3n1(cd)2n1(c+d)n)((1)n1hc3n1(cd)2n1(c+d)n)+((1)n1hc3n2(cd)2n2(c+d)n)=((1)nc3nd2n1(2cd)n1)c+cd=(1)nc3nd2n1(2cd)n,z6n2=x6n4y6n3y6n3z6n5=((1)n1f3n1gn1(2fg)2n1)((1)n1bf3n1(fg)2n1(3fg)n)((1)n1bf3n1(fg)2n1(3fg)n)((1)n1bf3n2(fg)2n1(3fg)n1)=((1)n1f3ngn1(2fg)2n1)(f3f+g)=(1)nf3ngn1(2fg)2n.

    Also, we see from Eq (2) that

    x6n1=y6n3z6n2z6n2+x6n4=((1)n1bf3n1(fg)2n1(3fg)n)((1)nf3ngn1(2fg)2n)((1)nf3ngn1(2fg)2n)+((1)n1f3n1gn1(2fg)2n1)=((1)nbf3n(fg)2n1(3fg)n)(f+2fg)=(1)nbf3n(fg)2n(3fg)n,y6n1=z6n3x6n2x6n2+y6n4=(ek3n1(ak)n1(a+k)2n)((1)nk3na2n1(a+2k)n)((1)nk3na2n1(a+2k)n)+((1)n1k3n1a2n2(a+2k)n)=(ek3n(ak)n1(a+k)2n)k+a=ek3n(ak)n(a+k)2n,z6n1=x6n3y6n2y6n2z6n4=((1)n1hc3n1(cd)2n1(c+d)n)((1)nc3nd2n1(2cd)n)((1)nc3nd2n1(2cd)n)((1)nc3n1d2n1(2cd)n1)=((1)n1hc3n(cd)2n1(c+d)n)c(2cd)=(1)nhc3n(cd)2n(c+d)n.

    Also, we can prove the other relations.

    Example 2. See below Figure 2 for system (2) with the initial conditions x2=11,x1=5, x0=13,y2=6, y1=7, y0=3,z2=14, z1=9 andz0=2.

    Figure 2.  This figure shows the behavior of solutions of the systems of rational recursive sequence xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, when we take the initial conditions: x2=11,x1=5, x0=13,y2=6, y1=7, y0=3,z2=14, z1=9 andz0=2. (See the figure we can conclude that all the solutions unboundedness solutions).

    Here, we obtain the form of solutions of the system

    xn+1=yn1znzn+xn2,yn+1=zn1xnxnyn2, zn+1=xn1ynyn+zn2, (3)

    where nN0 and the initial values are non-zero real numbers with x2±z0,2z0, z2±y0,2y0 and y2x0,2x0,3x0.

    Theorem 3. If  {xn,yn,zn} are solutions of system (3) where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k. Then for n=0,1,2,...,

    x6n2=k3na2n1(a2k)n, x6n1=(1)nbf3n(fg)n(f+g)2n, x6n=(1)nc3n+1dn(d2c)2n,x6n+1=(1)nek3n+1(ak)2n(a+k)n+1, x6n+2=(1)nf3n+2g2n(2f+g)n+1, x6n+3=(1)nhc3n+2(cd)2n+1(3cd)n+1,
    y6n2=(1)nc3ndn1(d2c)2n, y6n1=(1)nek3n(ak)2n(a+k)n, y6n=(1)nf3n+1g2n(2f+g)n,y6n+1=(1)nhc3n+1(cd)2n+1(3cd)n, y6n+2=k3n+2a2n+1(a2k)n, y6n+3=(1)nbf3n+2(fg)n(f+g)2n+2,

    and

    z6n2=(1)nf3ng2n1(2f+g)n, z6n1=(1)nhc3n(cd)2n(3cd)n, z6n=k3n+1a2n(a2k)n,z6n+1=(1)nbf3n+1(fg)n(f+g)2n+1, z6n+2=(1)nc3n+2dn(2cd)2n+1, z6n+3=(1)n+1ek3n+2(ak)2n+1(a+k)n+1.

    Proof. As the proof of Theorem 2 and so will be left to the reader.

    Example 3. We put the initials x2=8,x1=15, x0=13,y2=6,y1=7, y0=3,z2=14,z1=19 andz0=2, for the system (3), see Figure 3.

    Figure 3.  This figure shows the unstable of the solutions of the difference equations system (3) with the initial values x2=8,x1=15, x0=13,y2=6,y1=7, y0=3,z2=14,z1=19 andz0=2.

    The following systems can be treated similarly.

    In this section, we deal with the solutions of the following system

    xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, (4)

    where nN0 and the initial values are non-zero real with x2z0,2z0,3z0, z2±y0,2y0 and y2±x0,2x0.

    Theorem 4. The solutions of system (4) are given by

    x6n2=(1)nk3nan1(a2k)2n, x6n1=(1)nbf3n(fg)2n(f+g)n, x6n=(1)nc3n+1d2n(d+2c)n,x6n+1=ek3n+1(ak)2n+1(a3k)n, x6n+2=(1)n+1f3n+2g2n+1(2fg)n, x6n+3=(1)n+1hc3n+2(cd)n(c+d)2n+2,
    y6n2=(1)nc3nd2n1(d+2c)n, y6n1=ek3n(ak)2n(a3k)n, y6n=(1)nf3n+1g2n(2fg)n,y6n+1=(1)nhc3n+1(c+d)2n+1(cd)n, y6n+2=k3n+2an(a2k)2n+1, y6n+3=(1)nbf3n+2(fg)2n+1(f+g)n+1,

    and

    z6n2=(1)nf3ng2n1(2fg)n, z6n1=(1)nhc3n(c+d)2n(cd)n, z6n=(1)nk3n+1an(a2k)2n,z6n+1=(1)nbf3n+1(fg)2n(f+g)n+1, z6n+2=(1)nc3n+2d2n(2c+d)n+1, z6n+3=ek3n+2(ak)2n+1(a3k)n+1,

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Example 4. Figure 4 shows the behavior of the solution of system (4) with x2=18,x1=15, x0=3,y2=6, y1=.7, y0=3, z2=4,z1=9 andz0=5.

    Figure 4.  This figure shows the behavior of the system xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2 with the initial conditions:- x2=18,x1=15, x0=3, y2=6, y1=.7, y0=3, z2=4,z1=9 andz0=5.0.6, x1=0.2, x0=5. (From the figure, we see that all solutions goes to zero).

    In this section, we obtain the solutions of the difference system

    xn+1=yn1znznxn2,yn+1=zn1xnxnyn2, zn+1=xn1ynynzn2, (5)

    where the initials are arbitrary non-zero real numbers with x2z0, z2y0 and y2x0.

    Theorem 5. If  {xn,yn,zn} are solutions of system (5) where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k. Then

    x6n2=k3na3n1, x6n1=bf3n(fg)3n, x6n=c3n+1d3n,x6n+1=ek3n+1(ka)3n+1, x6n+2=f3n+2g3n+1, x6n+3=hc3n+2(cd)3n+2,
    y6n2=c3nd3n1, y6n1=ek3n(ka)3n, y6n=f3n+1g3n,y6n+1=hc3n+1(cd)3n+1, y6n+2=k3n+2a3n+1, y6n+3=bf3n+2(fg)3n+2,

    and

    z6n2=f3ng3n1, z6n1=hc3n(cd)3n, z6n=k3n+1a3n,z6n+1=bf3n+1(fg)3n+1, z6n+2=c3n+2d3n+1, z6n+3=ek3n+2(ka)3n+2.

    Example 5. Figure 5 shows the dynamics of the solution of system (5) with x2=18,x1=15,x0=3,y2=6,y1=.7, y0=3,z2=4,z1=9 andz0=5.

    Figure 5.  This figure shows the behavior of the system of nonlinear difference equations (5) with the initial conditions considered as follows:- x2=18,x1=15, x0=3,y2=6, y1=.7, y0=3,z2=4,z1=9 andz0=5.

    This paper discussed the expression's form and boundedness of some systems of rational third order difference equations. In Section 2, we studied the qualitative behavior of system xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, first we have got the form of the solutions of this system, studied the boundedness and gave numerical example and drew it by using Matlab. In Section 3, we have got the solution's of the system xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, and take a numerical example. In Sections 4–6, we obtained the solution of the following systems respectively, xn+1=yn1znzn+xn2,yn+1=zn1xnxnyn2, zn+1=xn1ynyn+zn2, xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, and xn+1=yn1znznxn2,yn+1=zn1xnxnyn2, zn+1=xn1ynynzn2. Also, in each case we take a numerical example to illustrates the results.

    This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 233–130–1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

    All authors declare no conflicts of interest in this paper.



    [1] R. Abo-Zeid, On the solutions of a fourth order difference equation, Univ. J. Math. Appl., 4 (2021), 76–81. https://doi.org/10.1017/S0040298221000693 doi: 10.1017/S0040298221000693
    [2] Y. Akrour, N. Touafek, Y. Halim, On a system of difference equations of third order solved in closed form, J. Innov. Appl. Math. Comput. Sci., 1 (2021), 1–15. https://doi.org/10.48550/arXiv.1910.14365 doi: 10.48550/arXiv.1910.14365
    [3] M. B. Almatrafi, Analysis of solutions of some discrete systems of rational difference equations, J. Comput. Anal. Appl., 29 (2021), 355–368.
    [4] A. M. Alotaibi, M. A. El-Moneam, On the dynamics of the nonlinear rational difference equation xn+1=αxnm   +δxnβ+γxnk   xnl    (xnk    +xnl      ), AIMS Math., 7 (2022), 7374–7384. https://doi.org/10.3934/math.2022411 doi: 10.3934/math.2022411
    [5] N. Battaloglu, C. Cinar, I. Yalçınkaya, The dynamics of the difference equation, ARS Combinatoria, 97 (2010), 281–288.
    [6] C. Cinar, I. Yalcinkaya, R. Karatas, On the positive solutions of the difference equation system xn+1=m/yn,yn+1=pyn/xn1yn1, J. Inst. Math. Comp. Sci., 18 (2005), 135–136.
    [7] C. Cinar, I. Yalçinkaya, On the positive solutions of the difference equation system xn+1=1/zn,yn+1=yn/xn1yn1,zn+1=1/xn1, J. Inst. Math. Comp. Sci., 18 (2005), 91–93.
    [8] S. E. Das, M. Bayram, On a system of rational difference equations, World Appl. Sci. J., 10 (2010), 1306–1312.
    [9] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the solutions of a class of difference equations systems, Demonstr. Math., 41 (2008), 109–122. https://doi.org/10.1515/dema-2008-0111 doi: 10.1515/dema-2008-0111
    [10] E. M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1155/2011/982309 doi: 10.1155/2011/982309
    [11] E. M. Elsayed, Solutions of rational difference system of order two, Math. Comput. Model., 55 (2012), 378–384. https://doi.org/10.1016/j.mcm.2011.08.012 doi: 10.1016/j.mcm.2011.08.012
    [12] E. M. Elsayed, M. M. El-Dessoky, A. Alotaibi, On the solutions of a general system of difference equations, Discrete Dyn. Nat. Soc., 2012 (2012). https://doi.org/10.1155/2012/892571 doi: 10.1155/2012/892571
    [13] E. M. Elsayed, A. Alshareef, Qualitative behavior of a system of second order difference equations, Eur. J. Math. Appl., 1 (2021), 1–11.
    [14] E. M. Elsayed, B. S. Alofi, A. Q. Khan, Qualitative behavior of solutions of tenth-order recursive sequence equation, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/5242325 doi: 10.1155/2022/5242325
    [15] E. M. Elsayed, F. Alzahrani, Periodicity and solutions of some rational difference equations systems, J. Appl. Anal. Comput., 9 (2019), 2358–2380. https://doi.org/10.11948/20190100 doi: 10.11948/20190100
    [16] T. F. Ibrahim, A. Q. Khan, A. Ibrahim, Qualitative behavior of a nonlinear generalized recursive sequence with delay, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/6162320 doi: 10.1155/2021/6162320
    [17] T. F. Ibrahim, A. Q. Khan, Forms of solutions for some two-dimensional systems of rational partial recursion equations, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/9966197 doi: 10.1155/2021/9966197
    [18] M. Kara, Y. Yazlik, On a solvable three-dimensional system of difference equations, Filomat, 34 (2020), 1167–1186. https://doi.org/10.2298/FIL2004167K doi: 10.2298/FIL2004167K
    [19] K. Y. Liu, Z. J. Zhao, X. R. Li, P. Li, More on three-dimensional systems of rational difference equations, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1155/2011/178483 doi: 10.1155/2011/178483
    [20] A. Khaliq, M. Shoaib, Dynamics of three-dimensional system of second order rational difference equations, Electron. J. Math. Anal. Appl., 9 (2021), 308–319.
    [21] A. Khelifa, Y. Halim, M. Berkal, Solutions of a system of two higher-order difference equations in terms of Lucas sequence, Univ. J. Math. Appl., 2 (2019), 202–211. https://doi.org/10.32323/ujma.610399 doi: 10.32323/ujma.610399
    [22] A. Khelifa, Y. Halim, Global behavior of P-dimensional difference equations system, Electron. Res. Arch., 29 (2021), 3121–3139. https://doi.org/10.3934/era.2021029 doi: 10.3934/era.2021029
    [23] A. S. Kurbanli, C. Cinar, I. Yalçınkaya, On the behavior of positive solutions of the system of rational difference equations, Math. Comput. Model., 53 (2011), 1261–1267. https://doi.org/10.1016/j.mcm.2010.12.009 doi: 10.1016/j.mcm.2010.12.009
    [24] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations, Adv. Differ. Equ., 2011 (2011), 40. https://doi.org/10.1186/1687-1847-2011-40 doi: 10.1186/1687-1847-2011-40
    [25] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations: xn+1=xn1/xn1yn1,yn+1=yn1/yn1xn1,zn+1=zn1/zn1yn1, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1186/1687-1847-2011-40 doi: 10.1186/1687-1847-2011-40
    [26] A. Kurbanli, C. Cinar, M. Erdoğan, On the behavior of solutions of the system of rational difference equations xn+1=xn1xn1yn1,yn+1=yn1yn1xn1,zn+1=xnzn1yn, Appl. Math., 2 (2011), 1031–1038.
    [27] B. Oğul, D. Şimşek, On the recursive sequence xn+1=xn14/1+xn2xn5xn8xn11, MANAS J. Eng., 8 (2020), 155–163. https://hdl.handle.net/20.500.13091/1672
    [28] A. Y. Ozban, On the system of rational difference equations xn+1=a/yn3,yn+1=byn3/xnqynq, Appl. Math. Comput., 188 (2007), 833–837. https://doi.org/10.1016/j.amc.2006.10.034 doi: 10.1016/j.amc.2006.10.034
    [29] D. Tollu, İ. Yalçınkaya, H. Ahmad, S. Yao, A detailed study on a solvable system related to the linear fractional difference equation, Math. Biosci. Eng., 18 (2021), 5392–5408. https://doi.org/10.3934/mbe.2021273 doi: 10.3934/mbe.2021273
    [30] N. Touafek, E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Model., 55 (2012), 1987–1997. https://doi.org/10.1016/j.mcm.2011.11.058 doi: 10.1016/j.mcm.2011.11.058
    [31] N. Touafek, D. Tollu, Y. Akrour, On a general homogeneous three-dimensional system of difference equations, Electron. Res. Arch., 29 (2021), 2841–2876. https://doi.org/10.3934/era.2021017 doi: 10.3934/era.2021017
    [32] I. Yalcinkaya, On the global asymptotic stability of a second-order system of difference equations, Discrete Dyn. Nat. Soc., 2008 (2008). https://doi.org/10.1155/2008/860152 doi: 10.1155/2008/860152
    [33] I. Yalçınkaya, On the global asymptotic behavior of a system of two nonlinear difference equations, ARS Combinatoria, 95 (2010), 151–159. https://doi.org/10.1016/j.ygeno.2009.12.003 doi: 10.1016/j.ygeno.2009.12.003
    [34] I. Yalçınkaya, C. Cinar, D. Simsek, Global asymptotic stability of a system of difference equations, Appl. Anal., 87 (2008), 689–699. https://doi.org/10.1097/PHM.0b013e31817e4b84 doi: 10.1097/PHM.0b013e31817e4b84
    [35] I. Yalcinkaya, C. Cinar, Global asymptotic stability of two nonlinear difference equations, Fasciculi Math., 43 (2010), 171–180.
    [36] I. Yalcinkaya, C. Cinar, M. Atalay, On the solutions of systems of difference equations, Adv. Differ. Equ., 2008 (2008). https://doi.org/10.1155/2008/143943 doi: 10.1155/2008/143943
    [37] X. Yang, Y. Liu, S. Bai, On the system of high order rational difference equations xn=a/ynp,yn=bynp/xnqynq, Appl. Math. Comput., 171 (2005), 853–856. https://doi.org/10.1016/j.amc.2005.01.092 doi: 10.1016/j.amc.2005.01.092
    [38] Y. Yazlik, D. T. Tollu, N. Taskara, On the behavior of solutions for some systems of difference equations, J. Comput. Anal. Appl., 18 (2015), 166–178.
    [39] Y. Zhang, X. Yang, G. M. Megson, D. J. Evans, On the system of rational difference equations, Appl. Math. Comput., 176 (2006), 403–408. https://doi.org/10.1016/j.amc.2005.09.039 doi: 10.1016/j.amc.2005.09.039
  • This article has been cited by:

    1. Khalil S. Al-Basyouni, Elsayed M. Elsayed, On Some Solvable Systems of Some Rational Difference Equations of Third Order, 2023, 11, 2227-7390, 1047, 10.3390/math11041047
    2. Ibraheem M. Alsulami, E. M. Elsayed, On a class of nonlinear rational systems of difference equations, 2023, 8, 2473-6988, 15466, 10.3934/math.2023789
    3. E.M. Elsayed, B.S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, 2023, 74, 11100168, 269, 10.1016/j.aej.2023.05.026
    4. Hashem Althagafi, Dynamics of difference systems: a mathematical study with applications to neural systems, 2025, 10, 2473-6988, 2869, 10.3934/math.2025134
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1821) PDF downloads(81) Cited by(4)

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog