In this paper, we prove a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on Rn. As applications, we characterize Fock-type spaces of eigenfunctions on Rn in terms of Lipschitz type conditions and double integral conditions. These obtained results are extensions of the corresponding ones in classcial Fock space.
Citation: Xi Fu, Xiaoqiang Xie. Characterizations of Fock-type spaces of eigenfunctions on Rn[J]. AIMS Mathematics, 2022, 7(8): 15550-15562. doi: 10.3934/math.2022852
[1] | Ermin Wang, Jiajia Xu . Toeplitz operators between large Fock spaces in several complex variables. AIMS Mathematics, 2022, 7(1): 1293-1306. doi: 10.3934/math.2022076 |
[2] | Zhi-jie Jiang . Self-adjoint and hyponormal weighted composition operators on the Fock space. AIMS Mathematics, 2024, 9(9): 24989-24997. doi: 10.3934/math.20241218 |
[3] | Hong-bin Bai, Zhi-jie Jiang, Xiao-bo Hu, Zuo-an Li . 2-complex symmetric weighted composition operators on Fock space. AIMS Mathematics, 2023, 8(9): 21781-21792. doi: 10.3934/math.20231111 |
[4] | Lujuan Yu, Beibei Wang, Jianwei Yang . An eigenvalue problem related to the variable exponent double-phase operator. AIMS Mathematics, 2024, 9(1): 1664-1682. doi: 10.3934/math.2024082 |
[5] | Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714 |
[6] | Kun Li, Peng Wang . Properties for fourth order discontinuous differential operators with eigenparameter dependent boundary conditions. AIMS Mathematics, 2022, 7(6): 11487-11508. doi: 10.3934/math.2022640 |
[7] | Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624 |
[8] | Yanfeng Li, Haicheng Liu . A multiplicity result for double phase problem in the whole space. AIMS Mathematics, 2022, 7(9): 17475-17485. doi: 10.3934/math.2022963 |
[9] | Ling Peng, Qiong Liu . The construction conditions of a Hilbert-type local fractional integral operator and the norm of the operator. AIMS Mathematics, 2025, 10(1): 1779-1791. doi: 10.3934/math.2025081 |
[10] | Ali H. Alkhaldi, Akram Ali, Jae Won Lee . The Lawson-Simons' theorem on warped product submanifolds with geometric information. AIMS Mathematics, 2021, 6(6): 5886-5895. doi: 10.3934/math.2021348 |
In this paper, we prove a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on Rn. As applications, we characterize Fock-type spaces of eigenfunctions on Rn in terms of Lipschitz type conditions and double integral conditions. These obtained results are extensions of the corresponding ones in classcial Fock space.
For n≥2, let Rn denote the n-dimensional real vector space. For two column vectors x,y∈Rn, we use ⟨x,y⟩ to denote the inner product of x and y. The ball in Rn with center a and radius r is denoted by B(a,r). In particular, we write B=B(0,1) and Br=B(0,r). Let dv be the volume measure on Rn and dσ the normalized surface measure on the unit sphere S=∂B.
Given α>0,m∈N and t∈R, the t-weighted (α,m)-Gaussian measure dGα,m,t on Rn is given by
dGα,m,t(x)=Cα,m,te−α|x|mdv(x)(1+|x|)t, |
where Cα,m,t is the positive constant to be the normalized volume measure. In particular, if m=2,t=0, dGα,2,0 is the classical Gaussian measure on Rn (cf. [1]).
For λ≥0, we denote by Hλ(Rn) the set of all eigenfunctions of the Laplacian with eigenvalue λ on Rn, i.e.,
Hλ(Rn)={f∈C2:Δf=λf}, |
where Δ is the ordinary Laplace operator on Rn. Obviously, if λ=0, H0(Rn) is the set of all harmonic functions on Rn.
Let 0<p<∞, s>−1 and f be a holomorphic function on the unit disc D of the complex plane C. The famous Hardy-Littlewood theorem asserts that
∫D|f(z)|p(1−|z|2)sdA(z)≈|f(0)|p+∫D|f′(z)|p(1−|z|2)p+sdA(z), | (1.1) |
where dA is the normalized area measure on C so that A(D)=1 (cf. [2]).
It is known that the integral estimate (1.1) plays an important role in the theory of holomorphic functions. For the generalizations and applications of (1.1) to the spaces of holomorphic functions, harmonic functions, and solutions to certain PDEs, see [3,4,5,6,7,8,9,10] and the references therein.
Let Cn be the n-dimensional complex vector space. In recent years a special class of holomorphic function spaces, the so-called holomorphic Fock space F(Cn), has attracted much attention. See [10,11,12,13,14,15,16] for a summary of recent research on F(Cn). For 0<p<∞ and α>0, recall that an entire function f on Cn is said to belong to the Fock space F(Cn) if
‖f‖pp,α=∫Cn|f(z)e−α|z|2|pdv(z)<∞. |
In [12], Hu considered an analog of (1.1) in the setting of F(Cn) and proved that
‖f‖pp,α≈|f(0)|p+∫Cn|∇f(z)(1+|z|)−1e−α|z|2|pdv(z). | (1.2) |
As a consequence of (1.2), he obtained the boundedness and compactness of Cesàro operators from one Fock space to another. For the further generalizations of (1.2) to holomorphic Fock spaces with some general differential weights, see [11,14,15]. By applying these results, Cho et al. characterized Fock-type spaces in terms of Lipschitz type conditions and double integral conditions (cf. [13,14]).
Since the eigenfunctions can be viewed as extensions of holomorphic functions on the complex vector space, it is interesting to establish analogous of the equivalence of norms (1.1) and (1.2) in the setting of Hλ(Rn). In [8], Stoll extended (1.1) to the setting of Hλ(B) ([8, Theorem 5.1]). Furthermore, by using this result, he established some harmonic majorants criteria for eigenfunctions with finite Dirichlet integrals on a bounded domain Ω of Rn ([8, Theorem 5.2]). Motivated by the results in [11,12,13,14], we consider a similar norm equivalence (1.2) in the setting of Hλ(Rn) in this note.
For 1<p<∞ and α>0, the Fock-type space Fpα,m,t(Rn) consists of all f∈Hλ(Rn) such that
‖f‖pFpα,m,t=∫Rn|f(x)e−α|x|m|pdv(x)(1+|x|)t<∞. |
Especially, when m=2, t=λ=0, Fpα,2,0(Rn) becomes the harmonic Fock space (cf. [17]).
Theorem 1.1. Let 1<p<∞, α>0,m∈N, t∈R. Then
‖f‖pFpα,m,t≈|f(0)|p+∫Rn|∇f(x)e−α|x|m1+|x|m−1|pdv(x)(1+|x|)t, | (1.3) |
for all f∈Hλ(Rn).
As an application of Theorem 1.1, we obtain a Lipschitz type characterization for the Fock-type space Fpα,m,t(Rn).
Theorem 1.2. Let 1<p<∞, α>0,m∈N, q≥0, t∈R and f∈Hλ(Rn). Then the following two statements are equivalent on Rn:
(a) f∈Fpα,m,t(Rn);
(b) There exists a positive continuous function g∈Lp(dGαp,m,t−pq(m−1)) such that
|f(x)−f(y)||x−y|≤(1+|x|m−1+|y|m−1)1+q(g(x)+g(y)) |
for all x,y∈Rn with x≠y.
For m∈N, s∈R, r>0 and f∈H0(Rn) (i.e. f is harmonic), we define
Lf(x,y)=f(x)−f(y) |
and
Lsrf(x,y)=[Lf(x,y)]es|x|mχEr(x)(y), |
where χEr(x) denotes the characteristic function of Euclidean ball Er(x) (see its definition in Section 2).
In our final result, we discuss the double integral characterization for harmonic Fock-type spaces.
Theorem 1.3. Let 1<p<∞, α>0,m∈N, t,s∈R, q≥0 and f∈H0(Rn). Then the following statements are equivalent on Rn:
(a) f∈Fpα,m,t(Rn);
(b) Lf∈Lp(dGαp,m,t×dGαp,m,t);
(c) Lsrf∈Lp(dGβp,m,γ×dGβp,m,γ), where β=s+α2,γ=t−n(m−1)2.
Lipschitz type characterization for Bergman spaces with standard weights on the unit disc D in the complex plane C in terms of the Euclidean, hyperbolic, and pseudo-hyperbolic metrics was original established by Wulan and Zhu ([9, Theorem 1.1]). As an application, double integral characterizations for weighted Bergman spaces in the unit ball in Cn were proved in [19]. For the further generalizations of these results to harmonic Bergman space and holomorphic Fock space, we refer to [3,4,6,13,14].
The rest of this paper is organized as follows. In Section 2, some necessary terminology and notation will be introduced. In Section 3, we shall prove Theorem 1.1. The proof of Theorem 1.2 will be presented in Section 4 by applying Theorem 1.1. The final Section 5 is devoted to the proof of Theorems 1.3. Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. For nonnegative quantities X and Y, X≲ means that X is dominated by Y times some inessential positive constant. We write X\thickapprox Y if Y\lesssim X\lesssim Y .
In this section, we introduce notations and collect some preliminaries results that involve eigenfunctions on {\mathbb R}^n .
For 0 < p < \infty , \lambda\geq 0 and f\in H_\lambda({\mathbb R}^n) , the p -th integral mean of f on r\mathbb{S} is defined as
M_p(f, r) = \Big ( \int_{\mathbb{S}}| f(r\xi)|^pd\sigma(\xi) \Big)^\frac{1}{p}, \; \; 0 < r < \infty. |
Lemma 2.1. Let 1\leq p < \infty , \lambda\geq 0 and f\in H_\lambda({\mathbb B}) . Then both M^p_p(f, r) and M^p_p(\nabla f, r) are increasing with 0 < r < 1 .
Proof. We first prove the monotonicity of M^p_p(f, r) . Let f\in H_\lambda({\mathbb B}) and \mathcal{Z}_f be the zero set of f on {\mathbb B} . Then
\Delta |f|^p = p(p-1)|f|^{p-2}|\nabla f|^2+p\lambda |f|^p\geq 0, |
which implies that |f|^p is subharmonic on {\mathbb B} \setminus \mathcal{Z}_f . Note that at each point of \mathcal{Z}_f the mean value inequality trivially holds, and thus |f|^p is subharmonic on {\mathbb B} . It follows from Green's theorem, we know that M^p_p(f, r) is increasing with 0 < r < 1 .
Now we come to prove the monotonicity of M^p_p(\nabla f, r) . In view of the definition of H_\lambda({\mathbb B}) , it is easy to see that if f\in H_\lambda({\mathbb B}) , then f\in \mathcal{C}^{\infty} . This gives
\Delta \partial_i f = \partial_i \Delta f = \lambda \partial_i f, \; \; \; i\in \{1, 2, ..., n\}, |
which implies that the partial derivative \partial_i f also belongs to H_\lambda({\mathbb B}) . By a discussion similar to the above, the monotonicity of M^p_p(\nabla f, r) follows.
For m\in \mathbb{N} , r > 0 and a\in {\mathbb R}^n , the Euclidean ball E_r(a) in {\mathbb R}^n is defined as
E_r(a) = \Big \{x\in {\mathbb R}^n: \; \; |x-a| < \frac{r}{1+|a|^{m-1}}\Big \}. |
Lemma 2.2. Let m\in \mathbb{N} , a\in {\mathbb R}^n and r > 0 . Then for any x \in E_r(a) ,
e^{|x|^m}\thickapprox e^{|a|^m} \;\;\;\mathit{\mbox{and}}\;\;\ 1 + |x|^{m-1}\thickapprox 1+|a|^{m-1}. |
Lemma 2.3. Let 1 < p < \infty , 0 < \alpha < \infty , k\in {\mathbb R}, m\in \mathbb{N} and f be a locally integrable function on [0, \infty) . Then there exists a constant C such that
\int_0^\infty \Big |\int_0^r f(t)dt \Big|^p(1+r)^k e^{-\alpha r^m}dr\leq C \int_0^\infty |f(r)|^p(1+r)^{k-(m-1)p} e^{-\alpha r^m}dr. |
Proof. Let \phi(r) = (1+r)^k e^{-\alpha r^m} , \varphi(r) = (1+r)^{k-(m-1)p}e^{-\alpha r^m} and p' be the conjugate of p , i.e., \frac{1}{p}+\frac{1}{p'} = 1 . By simple computations, we have
\lim\limits_{r\rightarrow \infty}\frac{\int_r^\infty \phi(t)dt}{r^{k-m+1}e^{-\alpha r^m}} = \frac{1}{\alpha m} |
and
\lim\limits_{r\rightarrow \infty}\frac{\int_0^r \varphi(t)^{1-p'}dt}{r^{-\frac{k-(m-1)p}{p-1}-m+1}e^{\frac{\alpha}{p-1}r^m}} = \frac{p-1}{\alpha m}. |
This gives that
\begin{eqnarray*} &&\lim\limits_{r\rightarrow \infty}\Big( \int_r^\infty \phi(r)dr \Big)^\frac{1}{p}\Big( \int_0^r \varphi(r)^{1-p'}dr \Big)^\frac{1}{p'}\\& = & \Big(\frac{1}{\alpha m}\Big)^{\frac{1}{p}}\Big(\frac{p-1}{\alpha m}\Big)^{\frac{1}{p'}} \lim\limits_{r\rightarrow \infty}\big(r^{k-m+1}e^{-\alpha r^m}\big)^{\frac{1}{p}}\big(r^{-\frac{k-(m-1)p}{p-1}-m+1}e^{\frac{\alpha}{p-1}r^m}\big)^{\frac{1}{p'}} \\& = & (\frac{1}{\alpha m})^{\frac{1}{p}}(\frac{p-1}{\alpha m})^{\frac{1}{p'}} \in (0, \infty). \end{eqnarray*} |
Since \int_0^\infty \phi(r)dr < \infty and \varphi(r)^{1-p'} \in C[0, R] for R > 0 , it concludes that
\sup\limits_{r\in [0, \infty)}\Big(\int_r^\infty \phi(r)dr\Big)^{\frac{1}{p}}\Big(\int_0^r \varphi(r)^{1-p'}dr \Big)^{\frac{1}{p'}} < \infty. |
Applying Riemann-Liouville integral theorem in [20], the assertion of this lemma follows.
We end this section with some inequalities concerning eigenfunctions in H_\lambda({\mathbb R}^n) which are useful for our investigations (cf. [8]).
Lemma 2.4. Let 1\leq p < \infty , r > 0 and f \in H_\lambda({\mathbb R}^n) . Then there exists some positive constant C such that
(i) \; \; |f(x)|^p\leq \frac{C}{r^n} \int_{ {\mathbb B}(x, r)} |f(y)|^pdv(y); \\ (ii) \; \; |\nabla f(x)|^p \leq \frac{C}{r^n} \int_{ {\mathbb B} (x, r)} |\nabla f(y)|^pdv(y); \\ (iii) \; \; |\nabla f(x)|^p \leq \frac{C}{r^{n+p}} \int_{ {\mathbb B}(x, r)} |f(y)|^pdv(y). |
In this section, we divide the proof of Theorem 1.1 into the following two parts.
Proposition 3.1. Let 1 < p < \infty , \alpha > 0, m\in \mathbb{N} , t\in {\mathbb R} . Then
\begin{eqnarray} \int_{ {\mathbb R}^n}\Big| \frac{\nabla f(x)e^{-\alpha |x|^m}}{1+|x|^{m-1}} \Big|^p \frac{dv(x)}{(1+|x|)^t} \lesssim \int_{ {\mathbb R}^n}|f(x)|^pe^{-\alpha p |x|^{m}}\frac{dv(x)}{(1+|x|)^t} \end{eqnarray} | (3.1) |
for all f\in H_\lambda({\mathbb R}^n) .
Proof. By the subharmonicity of |f(x)|^p and Lemma 2.4, we have
\begin{eqnarray} |\nabla f(x)|^p \lesssim \frac{(1+|x|^{m-1})^{n+p}}{\omega_nr^{n+p}}\int_{E_r(x)}|f(y)|^pdv(y), \end{eqnarray} | (3.2) |
where \omega_n is the volume of the unit ball in {\mathbb R}^n . It follows Lemma 2.2, (3.2) can be rewritten as
\begin{eqnarray*} \Big|\frac{\nabla f(x)e^{-\alpha |x|^m}}{1+|x|^{m-1}} \Big|^p \lesssim \frac{(1+|x|^{m-1})^{n}}{\omega_nr^{n+p}}\int_{E_r(x)}|f(y)|^pe^{-\alpha p |y|^{m}}dv(y). \end{eqnarray*} |
Combing this with Fubini's theorem, we obtain that
\begin{eqnarray*} &&\int_{ {\mathbb R}^n}\Big| \frac{\nabla f(x)e^{-\alpha |x|^m}}{1+|x|^{m-1}} \Big|^p \frac{dv(x)}{(1+|x|)^t} \\&\lesssim& \int_{ {\mathbb R}^n}\frac{(1+|x|^{m-1})^{n}}{(1+|x|)^t}\int_{E_r(x)}|f(y)|^pe^{-\alpha p|y|^{m}}dv(y)dv(x)\\&\lesssim &\int_{ {\mathbb R}^n}|f(y)|^pe^{-\alpha p |y|^{m}}dv(y)\int_{E_r(y)}\frac{(1+|x|^{m-1})^{n}}{(1+|x|)^t}dv(x)\\&\lesssim &\int_{ {\mathbb R}^n}|f(y)|^pe^{-\alpha p |y|^{m}}\frac{dv(y)}{(1+|y|)^t}. \end{eqnarray*} |
This proves the result.
Proposition 3.2. Let 1 < p < \infty , \alpha > 0, m\in \mathbb{N} , t\in {\mathbb R} . Then
\begin{eqnarray} \int_{ {\mathbb R}^n}|f(x)-f(0)|^pe^{-\alpha p|x|^{m}}\frac{dv(x)}{(1+|x|)^t} \lesssim \int_{ {\mathbb R}^n}\Big| \frac{\nabla f(x)e^{-\alpha |x|^m}}{1+|x|^{m-1}} \Big|^p \frac{dv(x)}{(1+|x|)^t} \end{eqnarray} | (3.3) |
for all f\in H_\lambda({\mathbb R}^n) .
Proof. To simplify our notation, set \partial_\rho f(\rho \zeta) = \frac{\partial f(\rho \zeta)}{\partial \rho} , where \rho > 0 and \zeta \in \mathbb{S} . By the fundamental theorem of calculus,
\begin{eqnarray*} &&\int_{ {\mathbb R}^n}|f(x)-f(0)|^pe^{-\alpha p|x|^{m}}\frac{dv(x)}{(1+|x|)^t} \\&\lesssim&\int_{0}^\infty\int_{\mathbb{S}} nr^{n-1}|f(r\zeta)-f(0)|^pe^{-\alpha pr^{m}}\frac{d\sigma(\zeta)dr}{(1+r)^t}\\&\lesssim& \int_{0}^\infty\int_{\mathbb{S}} nr^{n-1}\Big|\Big(\int_0^r \partial_\rho f(\rho\zeta)d\rho \Big)e^{-\alpha r^{m}}\Big|^p\frac{d\sigma(\zeta)dr}{(1+r)^t}\\&\lesssim& \int_{0}^\infty\int_{\mathbb{S}} nr^{n-1}\Big|\Big(\int_0^r |\nabla f(\rho\zeta)|d\rho \Big)\Big|^pe^{-\alpha p r^{m}}\frac{d\sigma(\zeta)dr}{(1+r)^t}\\&\lesssim& \int_{\mathbb{S}}\int_{0}^\infty r^{n-1}\Big|\nabla f(r\zeta)\Big|^p e^{-\alpha pr^{m}}\frac{drd\sigma(\zeta)}{(1+r)^{t+p(m-1)}}, \end{eqnarray*} |
where the last inequality follows from Lemma 2.3.
Hence, by the monotonicity of M_p^p(\nabla f, r) , we have
\begin{eqnarray*} &&\int_{ {\mathbb R}^n}|f(x)-f(0)|^pe^{-\alpha p|x|^{m}}\frac{dv(x)}{(1+|x|)^t} \\&\lesssim&\int_{0}^\infty M_p^p(\nabla f, r )e^{-\alpha pr^{m}}\frac{((\frac{2}{3})^{n-1}+r^{n-1})dr}{(1+r)^{t+p(m-1)}} \\&\lesssim &\Big\{\int_{0}^{\frac{2}{3}}+\int_{\frac{2}{3}}^{\infty}\Big\} M_p^p(\nabla f, r ) e^{-\alpha p r^{m}}\frac{((\frac{2}{3})^{n-1}+r^{n-1})dr}{(1+r)^{t+p(m-1)}}\\&\lesssim & \Big \{ M_p^p(\nabla f, \frac{2}{3} ) + \int_{\frac{2}{3}}^{\infty}r^{n-1}M_p^p(\nabla f, r ) e^{-\alpha p r^{m}}\frac{dr}{(1+r)^{t+p(m-1)}}\Big\} \\&\lesssim &\Big\{\int_{\frac{2}{3}}^{1}+\int_{\frac{2}{3}}^{\infty}\Big\} r^{n-1}M_p^p(\nabla f, r ) e^{-\alpha p r^{m}}\frac{dr}{(1+r)^{t+p(m-1)}}\\&\lesssim &\int_{ {\mathbb R}^n}\Big| \frac{\nabla f(x)e^{-\alpha |x|^m}}{1+|x|^{m-1}} \Big|^p \frac{dv(x)}{(1+|x|)^t}, \end{eqnarray*} |
as required. The proof of this proposition is finished.
Proof of Theorem 1.1. Gathering Propositions 3.1 and 3.2, (1.3) follows.
In this section, we discuss the Lipschitz type characterization for the space F^p_{\alpha, m, t}({\mathbb R}^n) by applying Theorem 1.1.
For x\in {\mathbb R}^n, r > 0 and m\in \mathbb{N} , set
\Omega_r(x) = \{y\in {\mathbb R}^n: |x-y|(1+|x|^{m-1}+|y|^{m-1}) < r\}. |
Obviously, we have \Omega_r(x) \subset E_r(x) .
Proof of Theorem 1.2. We first prove (b)\Rightarrow (a) . Assume that (b) holds. Fixing x and letting y approach x in the direction of each real coordinate axis, we get
\begin{eqnarray*} |\partial_i f(x)|\lesssim (1+|x|^{m-1})^{1+q}g(x) \end{eqnarray*} |
for each i\in \{1, 2, ..., n\} . Thus, we have
\begin{eqnarray*} \frac{|\nabla f(x)|}{1+|x|^{m-1}}\lesssim (1+|x|^{m-1})^{q}g(x), \; \; x\in {\mathbb B} \end{eqnarray*} |
and
\begin{eqnarray*} \int_{ {\mathbb R}^n} \frac{|\nabla f(x)|^pe^{-\alpha p|x|^{m}}}{(1+|x|^{m-1})^p}\frac{dv(x)}{(1+|x|)^t}&\lesssim& \int_{ {\mathbb R}^n}(1+|x|^{m-1})^{pq}|g(x)|^pe^{-\alpha p|x|^{m}} \frac{dv(x)}{(1+|x|)^t}\\&\lesssim& \int_{ {\mathbb R}^n}|g(x)|^pe^{-\alpha p|x|^{m}} \frac{dv(x)}{(1+|x|)^{t-pq(m-1)}}. \end{eqnarray*} |
It follows from the assumption g\in L^p(dG_{\alpha p, m, t-pq(m-1)}) that
\int_{ {\mathbb R}^n} \frac{|\nabla f(x)|^pe^{-\alpha p|x|^{m}}}{(1+|x|^{m-1}~~~)^p}\frac{dv(x)}{(1+|x|)^t} < \infty. |
Hence f\in F^p_{\alpha, m, t}({\mathbb R}^n) by Theorem 1.1.
For the converse, we assume f\in F^p_{\alpha, m, t}({\mathbb R}^n) . Fix r > 0 and consider any two points x, y\in {\mathbb R}^n with y\in \Omega_r(x) . Since sy+(1-s)x\in E_r(x) for 0\leq s \leq 1 , it is given that
\begin{eqnarray*} |f(x)-f(y)| & = &\big|\int^1_0\frac{df}{ds}(sy+(1-s)x)ds\big|\\&\leq& \sqrt{n}|x-y|\int^1_0|\nabla f(sy+(1-s)x)|ds\\&\lesssim& |x-y|\sup\{|\nabla f(\xi)|: \xi \in E_r(x)\}. \end{eqnarray*} |
Note that for each \xi \in E_r(x) ,
1+|\xi|^{m-1}\thickapprox 1+|x|^{m-1}\thickapprox 1+|x|^{m-1}+|y|^{m-1}, |
and thus
\begin{eqnarray*} |f(x)-f(y)| &\leq&|x-y|(1+|x|^{m-1}+|y|^{m-1})^{1+q} h(x), \end{eqnarray*} |
where
h(x) = C(r)\sup\limits_{\xi \in E_r(x)} \frac{|\nabla f(\xi)|}{(1+|\xi|^{m-1}~~~)^{1+q}}. |
If y\notin \Omega_r(x) , that is,
|x-y|(1+|x|^{m-1}+|y|^{m-1})\geq r, |
then the triangle inequality implies
\begin{eqnarray*} &&|f(x)-f(y)|\\&\leq& \frac{|x-y|(1+|x|^{m-1}+|y|^{m-1})}{r} (|f(x)|+|f(y)|)\\&\lesssim& \frac{|x-y|(1+|x|^{m-1}+|y|^{m-1})^{1+q}}{r} \Big(\frac{|f(x)|}{(1+|x|^{m-1}~~)^q}+\frac{|f(y)|}{(1+|y|^{m-1}~~)^q}\Big). \end{eqnarray*} |
By letting g(x) = h(x)+\frac{|f(x)|}{\; r(1+|x|^{m-1}~~)^q} , we obtain
|f(x)-f(y)|\leq |x-y|(1+|x|^{m-1}+|y|^{m-1}~~)^q\big(g(x)+g(y)\big) |
for all x, y \in {\mathbb R}^n . It is clear that \frac{|f(x)|}{\; r(1+|x|^{m-1}~~)^q} \in L^p(dG_{\alpha p, m, t-pq(m-1)}) from the assumption f\in F^p_{\alpha, m, t}({\mathbb R}^n) and thus g is the desired function provided that h\in L^p(dG_{\alpha p, m, t-pq(m-1)}) .
Now, we claim that h\in L^p(dG_{\alpha p, m, t-pq(m-1)}) . From the definition of E_r(x) , it is easy for us to find r_1 > r such that E_r(\xi) \subset E_{r_1}(x) for each \xi \in E_r(x) . By Lemmas 2.2 and 2.4, we deduces that
\begin{eqnarray*} \frac{|\nabla f(\xi)|^p}{(1+|\xi|^{m-1})^{p(1+q)}} &\leq& (1+|\xi|^{m-1})^{n-pq}\int_{E_{r}(\xi)}|f(y)|^pdv(y)\\&\lesssim& (1+|x|^{m-1})^{n-pq}\int_{E_{r_1}(x)}|f(y)|^pdv(y). \end{eqnarray*} |
Taking the supremum over all \xi \in E_r(x) leads to
\begin{eqnarray*} |h(x)|^p &\lesssim& (1+|x|^{m-1})^{n-pq}\int_{ E_{r_1}(x)}|f(y)|^pdv(y). \end{eqnarray*} |
Integrating both sides of the above inequality against the measure dG_{\alpha p, m, t-pq(m-1)} and applying Fubini's theorem, we have
\begin{eqnarray*} &&\int_{ {\mathbb R}^n}|h(x)|^pdG_{\alpha p, m, t-pq(m-1)}\\& = &\int_{ {\mathbb R}^n}\Big| h(x)e^{-\alpha |x|^m} \Big|^p \frac{dv(x)}{(1+|x|)^{t-pq(m-1)}} \\&\lesssim& \int_{ {\mathbb R}^n}\frac{(1+|x|^{m-1})^{n-pq}e^{-\alpha p |x|^{m}}}{(1+|x|)^{t-pq(m-1)}}\int_{E_{r_1}(x)}|f(y)|^pdv(y)dv(x)\\&\lesssim &\int_{ {\mathbb R}^n}|f(y)|^pdv(y)\int_{E_{r_1}(y)}\frac{(1+|x|^{m-1})^{n-pq}e^{-\alpha p |x|^{m}}}{(1+|x|)^{t-pq(m-1)}}dv(x). \end{eqnarray*} |
It follows from Lemma 2.2 again that
\begin{eqnarray*} \int_{ {\mathbb R}^n}|h(x)|^pdG_{\alpha p, m, t-pq(m-1)}&\lesssim &\int_{ {\mathbb R}^n}|f(y)|^pe^{-\alpha p|y|^{m}}\frac{dv(y)}{(1+|y|)^t}, \end{eqnarray*} |
which is what we need.
The proof of Theorem 1.2 is complete.
From the proof of Theorem 1.2, the following local version of Theorem 1.2 can be easily derived for arbitrary q\in {\mathbb R} .
Theorem 4.1. Let 1 < p < \infty , \alpha > 0, m\in \mathbb{N} , t, q\in {\mathbb R} and f\in H_\lambda({\mathbb R}^n) . Then the following two statements are equivalent on {\mathbb R}^n :
(a) f\in F^p_{\alpha, m, t}({\mathbb R}^n) ;
(b) There exists a positive continuous function g\in L^p(dG_{\alpha p, m, t-pq(m-1)}) such that
\begin{eqnarray*} \frac{|f(x)-f(y)|}{|x-y|}\leq (1+|x|^{m-1}+|y|^{m-1} )^{1+q} \big(g(x)+g(y) \big) \end{eqnarray*} |
for all x, y \in {\mathbb R}^n with y \in \Omega_r(x) and x \neq y .
In this section, we shall prove Theorem 1.3.
Theorem 5.1. Let 1 < p < \infty , \alpha > 0, m\in \mathbb{N} , t\in {\mathbb R} and f\in H_0({\mathbb R}^n) . Then the following two statements are equivalent on {\mathbb R}^n :
(a) f\in F^p_{\alpha, m, t}({\mathbb R}^n) ;
(b) Lf\in L^p(dG_{\alpha p, m, t}\times dG_{\alpha p, m, t}) .
Proof. Let f\in H_0({\mathbb R}^n) . We first assume that (a) holds. Then
\begin{eqnarray*} &&\|Lf\|^p_{L^p(dG_{\alpha p, m, t}\times dG_{\alpha p, m, t}~~~)}\\& = &\int_{ {\mathbb R}^n}\int_{ {\mathbb R}^n}|f(x)-f(y)|^pdG_{\alpha p, m, t}(x)dG_{\alpha p, m, t}(y)\\&\lesssim& \int_{ {\mathbb R}^n}\int_{ {\mathbb R}^n}(|f(x)|^p+|f(y)|^p)dG_{\alpha p, m, t}(x)dG_{\alpha p, m, t}(y)\\&\lesssim& \int_{ {\mathbb R}^n}|f(x)|^pdG_{\alpha p, m, t}(x) \end{eqnarray*} |
and thus (b) holds.
Conversely, assume (b) holds. Fixing x\in {\mathbb B} and replacing f by f-f(x) , it follows from Lemma 2.4, we have
\begin{eqnarray*} |f(x)-f(0)|^p&\lesssim& \int_{E_r(0)}|f(x)-f(y)|^pdv(y)\\&\lesssim& \int_{E_r(0)}|f(x)-f(y)|^pdG_{\alpha p, m, t}(y)\\&\lesssim& \int_{ {\mathbb R}^n}|f(x)-f(y)|^pdG_{\alpha p, m, t}(y). \end{eqnarray*} |
Integrating both sides of the above against the measure dG_{\alpha p, m, t}(x) gives
\begin{eqnarray*} \int_{ {\mathbb R}^n}|f(x)-f(0)|^pdG_{\alpha p, m, t}(x)& = & \int_{ {\mathbb R}^n}\int_{ {\mathbb R}^n}|f(x)-f(y)|^pdG_{\alpha p, m, t}(y)dG_{\alpha p, m, t}(x), \end{eqnarray*} |
from which we see that f\in F^p_{\alpha, m, t}({\mathbb R}^n) . The proof of this theorem is finished.
Now, we come to characterize F^p_{\alpha, m, t}({\mathbb R}^n) in terms of double integral of L^s_rf as follows.
Theorem 5.2. Let 1 < p < \infty , \alpha > 0, m\in \mathbb{N} , t, s \in {\mathbb R} and f\in H_0({\mathbb R}^n) . Then the following two statements are equivalent on {\mathbb R}^n :
(a) f\in F^p_{\alpha, m, t}({\mathbb R}^n) ;
(b) L_r^s f\in L^p(dG_{\beta p, m, \gamma}\times dG_{\beta p, m, \gamma}) , where \beta = \frac{s+\alpha}{2}, \gamma = \frac{t-n(m-1)}{2} .
Proof. Let us first assume that (a) holds. Then
\begin{eqnarray*} &&\|L_r^s f\|^p_{L^p(dG_{\beta p, m, \gamma}\times dG_{\beta p, m, \gamma})}\\& = &\int_{ {\mathbb R}^n}\int_{ {\mathbb R}^n}|f(x)-f(y)|^pe^{sp|x|^m}\chi _{E_r(x)}(y)dG_{\beta p, m, \gamma}(x)dG_{\beta p, m, \gamma}(y)\\&\lesssim&\int_{ {\mathbb R}^n}\int_{E_r(x)}(|f(x)|^p+|f(y)|^p)e^{sp|x|^m}dG_{\beta p, m, \gamma}(y)dG_{\beta p, m, \gamma}(x)\\&\lesssim&\int_{ {\mathbb R}^n}\int_{E_r(x)}|f(x)|^pe^{sp|x|^m}dG_{\beta p, m, \gamma}(y)dG_{\beta p, m, \gamma}(x)\\&&+\int_{ {\mathbb R}^n}\int_{E_r(x)}|f(y)|^pe^{sp|y|^m}dG_{\beta p, m, \gamma}(y)dG_{\beta p, m, \gamma}(x). \end{eqnarray*} |
By applying Lemma 2.2 and Fubini's theorem, we conclude that
\begin{eqnarray*} &&\int_{ {\mathbb R}^n}\int_{E_r(x)}|f(x)|^pe^{sp|x|^m}dG_{\beta p, m, \gamma}(y)dG_{\beta p, m, \gamma}(x)\\&\lesssim&\int_{ {\mathbb R}^n}|f(x)|^pe^{sp|x|^m}dG_{\beta p, m, \gamma}(x)\int_{E_r(x)}e^{-\beta p |y|^m}\frac{dv(y)}{(1+|y|)^\gamma}\\&\lesssim&\int_{ {\mathbb R}^n}|f(x)|^pdG_{\alpha p, m, t}(x) \end{eqnarray*} |
and
\begin{eqnarray*} &&\int_{ {\mathbb R}^n}\int_{E_r(x)}|f(y)|^pe^{sp|y|^m}dG_{\beta p, m, \gamma}(y)dG_{\beta p, m, \gamma}(x)\\&\lesssim&\int_{ {\mathbb R}^n}|f(y)|^pe^{sp|y|^m}dG_{\beta p, m, \gamma}(y)\int_{E_r(y)}dG_{\beta p, m, \gamma}(x) \\&\lesssim&\int_{ {\mathbb R}^n}|f(y)|^pdG_{\alpha p, m, t}(y). \end{eqnarray*} |
Therefore
\begin{eqnarray*} \|L_r^s \|^p_{L^p(G_{\alpha p, m, t}\times G_{\alpha p, m, t})}&\lesssim&\int_{ {\mathbb R}^n}|f(x)|^pdG_{\alpha p, m, t}(x). \end{eqnarray*} |
Conversely, we assume (b) holds. Fixing x\in {\mathbb B} and f\in H_0({\mathbb R}^n) , let
g_x(y) = [f(y)-f(x)]e^{s|x|^m}. |
Then it is easy to check that g_x(y)\in H_0({\mathbb R}^n) and \nabla g_x(x) = \nabla f(x) e^{s|x|^m} . Applying Lemmas 2.2 and 2.4, we obtain
\begin{eqnarray*} \Big( \frac{|\nabla f(x)| e^{s|x|^m}}{1+|x|^{m-1}} \Big)^p &\leq& (1+|x|^{m-1})^{n}\int_{E_{r}(x)}|f(y)-f(x)|^pe^{sp|x|^m}dv(y). \end{eqnarray*} |
By integrating both sides of the above against the measure dG_{(s+\alpha) p, m, t}(x) and Lemma 2.2 again, we see that
\begin{eqnarray*} &&\int_{ {\mathbb R}^n}\Big| \frac{\nabla f(x)e^{-\alpha |x|^m}}{1+|x|^{m-1}} \Big|^p \frac{dv(x)}{(1+|x|)^t} \\&\leq& \int_{ {\mathbb R}^n}(1+|x|^{m-1})^{n}\int_{E_{r}(x)}|f(y)-f(x)|^pe^{sp|x|^m}dv(y)dG_{(s+\alpha) p, m, t}(x)\\&\leq& \int_{ {\mathbb R}^n}\int_{E_{r}(x)}|f(y)-f(x)|^pe^{sp|x|^m}dv(y)dG_{(s+\alpha) p, m, t-n(m-1)}(x)\\&\leq& \int_{ {\mathbb R}^n}\int_{ {\mathbb R}^n}|f(x)-f(y)|^pe^{sp|x|^m}\chi _{E_r(x)}(y)dG_{\beta p, m, \gamma}(x)dG_{\beta p, m, \gamma}(y). \end{eqnarray*} |
Hence, by Theorem 1.1, we obtain
\int_{ {\mathbb R}^n}|f(x)|^pdG_{\alpha p, m, t}(x)\lesssim \|L_r^s f\|^p_{L^p(dG_{\beta p, m, \gamma}\times dG_{\beta p, m, \gamma}~~~)}. |
The proof of this theorem is complete.
We obtain a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on \mathbb{R}^n . By using this result, we characterize Fock-type spaces of eigenfunctions on \mathbb{R}^n in terms of Lipschitz type conditions and double integral conditions. All of these results are extensions of the corresponding ones in classcial Fock space.
The authors heartily thank the referee for a careful reading of the paper as well as for many useful comments and suggestions.
The authors declare that there is no conflicts of interest regarding the publication of this article.
[1] | W. Urbina, On singular integrals with respect to the Gaussian measure, Ann. Scuola Norm. Super. Pisa Cl. Sci., 17 (1990), 531–567. |
[2] | H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, New York: Springer-Verlag, 2000. |
[3] |
B. R. Choe, K. Nam, Double integral characterizations of harmonic Bergman spaces, J. Math. Anal. Appl., 379 (2011), 889–909. https://doi.org/10.1016/j.jmaa.2011.02.024 doi: 10.1016/j.jmaa.2011.02.024
![]() |
[4] |
X. Fu, J. Qiao, Bergman spaces, Bloch spaces and integral means of p-harmonic functions, Bull. Korean Math. Soc., 58 (2021), 481–495. https://doi.org/10.4134/BKMS.B200367 doi: 10.4134/BKMS.B200367
![]() |
[5] | J. Kinnunen, M. Kotilainen, V. Latvala, Hardy-Littlewood type gradient estimates for quasiminimizers, Boll. Unione Mat. Ital., 3 (2010), 125–136. |
[6] |
K. Nam, Lipschitz type characterizations of harmonic Bergman spaces, Bull. Korean Math. Soc., 50 (2013), 1277–1288. https://doi.org/10.4134/BKMS.2013.50.4.1277 doi: 10.4134/BKMS.2013.50.4.1277
![]() |
[7] |
M. Pavlović, J. Peláez, An equivalence for weighted integrals of an analytic function and its derivative, Math. Nachr., 281 (2008), 1612–1623. https://doi.org/10.1002/mana.200510701 doi: 10.1002/mana.200510701
![]() |
[8] |
M. Stoll, Harmonic majorants for eigenfunctions of the Laplacian with finite Dirichlet integrals, J. Math. Anal. Appl., 274 (2002), 788–811. https://doi.org/10.1016/S0022-247X(02)00364-5 doi: 10.1016/S0022-247X(02)00364-5
![]() |
[9] |
H. Wulan, K. Zhu, Lipschitz type characterizations for Bergman spaces, Can. Math. Bull., 52 (2009), 613–626. https://doi.org/10.4153/CMB-2009-060-6 doi: 10.4153/CMB-2009-060-6
![]() |
[10] | K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, New York: Springer, 2012. |
[11] |
J. M. Ha, H. R. Cho, H. W. Lee, A norm equivalence for the mixed norm of Fock type, Complex Var. Elliptic Equ., 61 (2016), 1644–1655. https://doi.org/10.1080/17476933.2016.1197916 doi: 10.1080/17476933.2016.1197916
![]() |
[12] |
Z. Hu, Equivalent norms on Fock spaces with some application to extended Cesàro operators, Proc. Amer. Math. Soc., 141 (2013), 2829–2840. https://doi.org/10.1090/S0002-9939-2013-11550-9 doi: 10.1090/S0002-9939-2013-11550-9
![]() |
[13] |
B. R. Choe, K. Nam, New characterizations for the weighted fock spaces, Complex Anal. Oper. Theory., 13 (2019), 2671–2686. https://doi.org/10.1007/s11785-018-0850-1 doi: 10.1007/s11785-018-0850-1
![]() |
[14] |
J. M. Ha, K. Nam, Characterizations for the Fock-type spaces, Bull. Korean Math. Soc., 56 (2019), 745–756. http://dx.doi.org/10.4134/BKMS.b180540 doi: 10.4134/BKMS.b180540
![]() |
[15] |
H. R. Cho, K. Zhu, Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal., 263 (2012), 2483–2506. https://doi.org/10.1016/j.jfa.2012.08.003 doi: 10.1016/j.jfa.2012.08.003
![]() |
[16] |
N. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc., 140 (2012), 4247–4257. http://dx.doi.org/10.1090/S0002-9939-2012-11541-2 doi: 10.1090/S0002-9939-2012-11541-2
![]() |
[17] |
M. Engliš, Berezin transform on the harmonic Fock space, J. Math. Anal. Appl., 367 (2010), 75–97. https://doi.org/10.1016/j.jmaa.2009.12.028 doi: 10.1016/j.jmaa.2009.12.028
![]() |
[18] |
S. Li, H. Wulan, R. Zhao, K. Zhu, A characterization of Bergman spaces on the unit ball of {\mathbb C}^n, Glasgow Math. J., 51 (2009), 315–330. https://doi.org/10.1017/S0017089509004996 doi: 10.1017/S0017089509004996
![]() |
[19] |
S. Li, H. Wulan, K. Zhu, A characterization of Bergman spaces on the unit ball of {\mathbb C}^n II, Can. Math. Bull., 55 (2012), 146–152. https://doi.org/10.4153/CMB-2011-047-6 doi: 10.4153/CMB-2011-047-6
![]() |
[20] |
F. J. Martin-Reyes, E. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc., 106 (1989), 727–733. https://doi.org/10.1090/S0002-9939-1989-0965246-8 doi: 10.1090/S0002-9939-1989-0965246-8
![]() |