In this paper, we prove a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on $ \mathbb{R}^n $. As applications, we characterize Fock-type spaces of eigenfunctions on $ \mathbb{R}^n $ in terms of Lipschitz type conditions and double integral conditions. These obtained results are extensions of the corresponding ones in classcial Fock space.
Citation: Xi Fu, Xiaoqiang Xie. Characterizations of Fock-type spaces of eigenfunctions on $ \mathbb{R}^n $[J]. AIMS Mathematics, 2022, 7(8): 15550-15562. doi: 10.3934/math.2022852
In this paper, we prove a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on $ \mathbb{R}^n $. As applications, we characterize Fock-type spaces of eigenfunctions on $ \mathbb{R}^n $ in terms of Lipschitz type conditions and double integral conditions. These obtained results are extensions of the corresponding ones in classcial Fock space.
[1] | W. Urbina, On singular integrals with respect to the Gaussian measure, Ann. Scuola Norm. Super. Pisa Cl. Sci., 17 (1990), 531–567. |
[2] | H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, New York: Springer-Verlag, 2000. |
[3] | B. R. Choe, K. Nam, Double integral characterizations of harmonic Bergman spaces, J. Math. Anal. Appl., 379 (2011), 889–909. https://doi.org/10.1016/j.jmaa.2011.02.024 doi: 10.1016/j.jmaa.2011.02.024 |
[4] | X. Fu, J. Qiao, Bergman spaces, Bloch spaces and integral means of $p$-harmonic functions, Bull. Korean Math. Soc., 58 (2021), 481–495. https://doi.org/10.4134/BKMS.B200367 doi: 10.4134/BKMS.B200367 |
[5] | J. Kinnunen, M. Kotilainen, V. Latvala, Hardy-Littlewood type gradient estimates for quasiminimizers, Boll. Unione Mat. Ital., 3 (2010), 125–136. |
[6] | K. Nam, Lipschitz type characterizations of harmonic Bergman spaces, Bull. Korean Math. Soc., 50 (2013), 1277–1288. https://doi.org/10.4134/BKMS.2013.50.4.1277 doi: 10.4134/BKMS.2013.50.4.1277 |
[7] | M. Pavlović, J. Peláez, An equivalence for weighted integrals of an analytic function and its derivative, Math. Nachr., 281 (2008), 1612–1623. https://doi.org/10.1002/mana.200510701 doi: 10.1002/mana.200510701 |
[8] | M. Stoll, Harmonic majorants for eigenfunctions of the Laplacian with finite Dirichlet integrals, J. Math. Anal. Appl., 274 (2002), 788–811. https://doi.org/10.1016/S0022-247X(02)00364-5 doi: 10.1016/S0022-247X(02)00364-5 |
[9] | H. Wulan, K. Zhu, Lipschitz type characterizations for Bergman spaces, Can. Math. Bull., 52 (2009), 613–626. https://doi.org/10.4153/CMB-2009-060-6 doi: 10.4153/CMB-2009-060-6 |
[10] | K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, New York: Springer, 2012. |
[11] | J. M. Ha, H. R. Cho, H. W. Lee, A norm equivalence for the mixed norm of Fock type, Complex Var. Elliptic Equ., 61 (2016), 1644–1655. https://doi.org/10.1080/17476933.2016.1197916 doi: 10.1080/17476933.2016.1197916 |
[12] | Z. Hu, Equivalent norms on Fock spaces with some application to extended Cesàro operators, Proc. Amer. Math. Soc., 141 (2013), 2829–2840. https://doi.org/10.1090/S0002-9939-2013-11550-9 doi: 10.1090/S0002-9939-2013-11550-9 |
[13] | B. R. Choe, K. Nam, New characterizations for the weighted fock spaces, Complex Anal. Oper. Theory., 13 (2019), 2671–2686. https://doi.org/10.1007/s11785-018-0850-1 doi: 10.1007/s11785-018-0850-1 |
[14] | J. M. Ha, K. Nam, Characterizations for the Fock-type spaces, Bull. Korean Math. Soc., 56 (2019), 745–756. http://dx.doi.org/10.4134/BKMS.b180540 doi: 10.4134/BKMS.b180540 |
[15] | H. R. Cho, K. Zhu, Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal., 263 (2012), 2483–2506. https://doi.org/10.1016/j.jfa.2012.08.003 doi: 10.1016/j.jfa.2012.08.003 |
[16] | N. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc., 140 (2012), 4247–4257. http://dx.doi.org/10.1090/S0002-9939-2012-11541-2 doi: 10.1090/S0002-9939-2012-11541-2 |
[17] | M. Engliš, Berezin transform on the harmonic Fock space, J. Math. Anal. Appl., 367 (2010), 75–97. https://doi.org/10.1016/j.jmaa.2009.12.028 doi: 10.1016/j.jmaa.2009.12.028 |
[18] | S. Li, H. Wulan, R. Zhao, K. Zhu, A characterization of Bergman spaces on the unit ball of $ {\mathbb C}^n$, Glasgow Math. J., 51 (2009), 315–330. https://doi.org/10.1017/S0017089509004996 doi: 10.1017/S0017089509004996 |
[19] | S. Li, H. Wulan, K. Zhu, A characterization of Bergman spaces on the unit ball of $ {\mathbb C}^n$ II, Can. Math. Bull., 55 (2012), 146–152. https://doi.org/10.4153/CMB-2011-047-6 doi: 10.4153/CMB-2011-047-6 |
[20] | F. J. Martin-Reyes, E. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc., 106 (1989), 727–733. https://doi.org/10.1090/S0002-9939-1989-0965246-8 doi: 10.1090/S0002-9939-1989-0965246-8 |