The aim of the present paper is to completely characterize 2-complex symmetric weighted composition operators $ W_{e^{\overline{p}z, az+b}} $ with the conjugations $ C $ and $ C_{r, s, t} $ defined by $ Cf(z) = \overline{f(\bar{z})} $ and $ C_{r, s, t}f(z) = te^{sz}\overline{f(\overline{rz+s})} $ on Fock space by building the relations between the parameters $ a $, $ b $, $ p $, $ r $, $ s $ and $ t $. Some examples of such operators are also given.
Citation: Hong-bin Bai, Zhi-jie Jiang, Xiao-bo Hu, Zuo-an Li. 2-complex symmetric weighted composition operators on Fock space[J]. AIMS Mathematics, 2023, 8(9): 21781-21792. doi: 10.3934/math.20231111
The aim of the present paper is to completely characterize 2-complex symmetric weighted composition operators $ W_{e^{\overline{p}z, az+b}} $ with the conjugations $ C $ and $ C_{r, s, t} $ defined by $ Cf(z) = \overline{f(\bar{z})} $ and $ C_{r, s, t}f(z) = te^{sz}\overline{f(\overline{rz+s})} $ on Fock space by building the relations between the parameters $ a $, $ b $, $ p $, $ r $, $ s $ and $ t $. Some examples of such operators are also given.
[1] | S. R. Bhuia, A class of $C$-normal weighted composition operators on Fock space $\mathcal{F}^2({\mathbb C})$, J. Math. Anal. Appl., 508 (2022), 125896. https://doi.org/10.1016/j.jmaa.2021.125896 doi: 10.1016/j.jmaa.2021.125896 |
[2] | B. J. Carswell, B. D. MacCluer, A. Schuster, Composition operators on the Fock space, Acta. Sci. Math., 69 (2003), 871–887. |
[3] | M. Chō, E. Ko, J. Lee, On $m$-complex symmetric operators, Mediterr. J. Math., 13 (2016), 2025–2038. http://dx.doi.org/10.1007/s00009-015-0597-0 doi: 10.1007/s00009-015-0597-0 |
[4] | M. Chō, E. Ko, J. Lee, On $m$-complex symmetric operators, Ⅱ, Mediterr. J. Math., 13 (2016), 3255–3264. http://dx.doi.org/10.1007/s00009-016-0683-y doi: 10.1007/s00009-016-0683-y |
[5] | C. C. Cowen, E. A. Gallardo-Gutiérrez, A new class of operators and a description of adjoints of composition operators, J. Funct. Anal., 238 (2006), 447–462. https://doi.org/10.1016/j.jfa.2006.04.031 doi: 10.1016/j.jfa.2006.04.031 |
[6] | G. Exner, J. Jin, I. Jung, J. Lee, On $m$-complex symmetric weighted shift operators on $ {\mathbb C}^n$, Linear Algebra Appl., 603 (2020), 130–153. https://doi.org/10.1016/j.laa.2020.05.030 doi: 10.1016/j.laa.2020.05.030 |
[7] | M. Fatehi, Complex symmetric weighted composition operators, Complex Var. Elliptic Equ., 64 (2019), 710–720. https://doi.org/10.1080/17476933.2018.1498087 doi: 10.1080/17476933.2018.1498087 |
[8] | F. Forelli, The isometries on $H^p$, Canadian J. Math., 16 (1964), 721–728. https://doi.org/10.4153/CJM-1964-068-3 doi: 10.4153/CJM-1964-068-3 |
[9] | S. R. Garcia, M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358 (2006), 1285–1315. https://doi.org/10.2307/3845524 doi: 10.2307/3845524 |
[10] | S. R. Garcia, M. Putinar, Complex symmetric operators and applications, Ⅱ, Trans. Am. Math. Soc., 359 (2007), 3913–3931. https://doi.org/10.1090/S0002-9947-07-04213-4 doi: 10.1090/S0002-9947-07-04213-4 |
[11] | S. R. Garcia, W. Wogen, Complex symmetric partial isometries, J. Funct. Anal., 257 (2009), 1251–1260. https://doi.org/10.1016/j.jfa.2009.04.005 doi: 10.1016/j.jfa.2009.04.005 |
[12] | S. R. Garcia, W. Wogen, Some new classes of complex symmetric operators, Trans. Am. Math. Soc., 362 (2010), 6065–6077. https://doi.org/10.1090/s0002-9947-2010-05068-8 doi: 10.1090/s0002-9947-2010-05068-8 |
[13] | S. R. Garcia, E. Prodan, M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A-Math. Theor., 47 (2014), 353001. https://doi.org/10.1088/1751-8113/47/35/353001 doi: 10.1088/1751-8113/47/35/353001 |
[14] | A. Gupta, A. Malhotra, Complex symmetric weighted composition operators on the space $H_1^2({\mathbb D})$, Complex Var. Elliptic Equ., 65 (2020), 1488–1500. https://doi.org/10.1080/17476933.2019.1664483 doi: 10.1080/17476933.2019.1664483 |
[15] | P. V. Hai, L. H. Khoi, Complex symmetry of weighted composition operators on the Fock space, J. Math. Anal. Appl., 433 (2016), 1757–1771. https://doi.org/10.1016/j.jmaa.2015.08.069 doi: 10.1016/j.jmaa.2015.08.069 |
[16] | J. W. Helton, Operators with a representation as multiplication by $x$ on a Sobolev space, Colloquia Math. Soc., Janos Bolyai 5, Hilbert space operators, Tihany, Hungary. |
[17] | L. Hu, S. Li, R. Yang, 2-complex symmetric composition operators on $H^2$, Axioms, 11 (2022), 358. https://doi.org/10.3390/axioms11080358 doi: 10.3390/axioms11080358 |
[18] | S. Jung, Y. Kim, E. Ko, J. Lee, Complex symmetric weighted composition operators on $H^2({\mathbb D})$, J. Funct. Anal., 267 (2014), 323–351. https://doi.org/10.1016/j.jfa.2017.02.021 doi: 10.1016/j.jfa.2017.02.021 |
[19] | T. Le, Normal and isometric weighted composition operators on the Fock space, Bull. London Math. Soc., 46 (2014), 847–856. https://doi.org/10.1112/blms/bdu046 doi: 10.1112/blms/bdu046 |
[20] | R. Lim, L. Khoi, Complex symmetric weighted composition operators on $H_\gamma({\mathbb D})$, J. Math. Anal. Appl., 464 (2018), 101–118. |
[21] | S. Narayan, D. Sievewright, D. Thompson, Complex symmetric composition operators on $H^2$, J. Math. Anal. Appl., 443 (2016), 625–630. https://doi.org/10.1016/j.jmaa.2016.05.046 doi: 10.1016/j.jmaa.2016.05.046 |
[22] | S. Narayan, D. Sievewright, M. Tjani, Complex symmetric composition operators on weighted Hardy spaces, Proc. Amer. Math. Soc., 148 (2020), 2117–2127. https://doi.org/10.1090/proc/14909 doi: 10.1090/proc/14909 |
[23] | D. Thompson, T. McClatchey, C. Holleman, Binormal, complex symmetric operators, Linear Multilinear A., 69 (2021), 1705–1715. https://doi.org/10.1080/03081087.2019.1635982 doi: 10.1080/03081087.2019.1635982 |
[24] | S. Ueki, Weighted composition operator on the Fock space, Proc. Amer. Math. Soc., 135 (2007), 1405–1410. https://doi.org/10.1090/s0002-9939-06-08605-9 doi: 10.1090/s0002-9939-06-08605-9 |
[25] | X. Yao, Complex symmetric composition operators on a Hilbert space of Dirichlet series, J. Math. Anal. Appl., 452 (2017), 1413–1419. https://doi.org/10.1016/j.jmaa.2017.03.076 doi: 10.1016/j.jmaa.2017.03.076 |
[26] | L. Zhao, Unitary weighted composition operators on the Fock space of $ {\mathbb C}^N$, Complex Anal. Oper. Th., 8 (2014), 581–590. https://doi.org/10.1007/s11785-013-0313-7 doi: 10.1007/s11785-013-0313-7 |
[27] | L. Zhao, A class of normal weighted composition operators on the Fock space of $ {\mathbb C}^N$, Acta Math. Sin., 31 (2015), 1789–1797. https://doi.org/10.1007/s10114-015-4758-7 doi: 10.1007/s10114-015-4758-7 |
[28] | L. Zhao, Invertible weighted composition operators on the Fock space of $ {\mathbb C}^N$, J. Funct. Space., 2015, 250358. http://dx.doi.org/10.1155/2015/250358 doi: 10.1155/2015/250358 |
[29] | L. Zhao, C. Pang, A class of weighted composition operators on the Fock space, J. Math. Res. Appl., 35 (2015), 303–310. http://dx.doi.org/10.1080/17476933.2019.1643332 doi: 10.1080/17476933.2019.1643332 |
[30] | K. H. Zhu, Analysis on Fock spaces, New York: Springer Press, 2012. Available from: http://www.springer.com/series/136 |