Processing math: 100%
Research article Special Issues

Approximation properties of Stancu type Szász-Mirakjan operators

  • In this paper, a class of Stancu type Szász-Mirakjan operators are introduced. The approximation properties of the operators are discussed using tools of modulus of continuity, modulus of smoothness and K-functional. The estimation of the Lipschitz function class by the operators is also studied. Later, the Voronvskaya type asymptotic expansion of the operators is established. Finally, we compare the convergence of these newly defined operators for certain functions with certain graphs.

    Citation: Bo-Yong Lian, Qing-Bo Cai. Approximation properties of Stancu type Szász-Mirakjan operators[J]. AIMS Mathematics, 2023, 8(9): 21769-21780. doi: 10.3934/math.20231110

    Related Papers:

    [1] Purshottam Narain Agrawal, Behar Baxhaku, Abhishek Kumar . Approximation properties of generalized Baskakov operators. AIMS Mathematics, 2021, 6(7): 6986-7016. doi: 10.3934/math.2021410
    [2] Erkan Agyuz . On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367
    [3] Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105
    [4] Mustafa Kara . Approximation properties of the new type generalized Bernstein-Kantorovich operators. AIMS Mathematics, 2022, 7(3): 3826-3844. doi: 10.3934/math.2022212
    [5] Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou . Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317
    [6] Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar . Approximation by the modified $ \lambda $-Bernstein-polynomial in terms of basis function. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217
    [7] Guorong Zhou, Qing-Bo Cai . Bivariate $ \lambda $-Bernstein operators on triangular domain. AIMS Mathematics, 2024, 9(6): 14405-14424. doi: 10.3934/math.2024700
    [8] B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra . Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Mathematics, 2020, 5(1): 650-672. doi: 10.3934/math.2020044
    [9] Abdullah Alotaibi, M. Mursaleen . Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus. AIMS Mathematics, 2020, 5(4): 3019-3034. doi: 10.3934/math.2020196
    [10] Bing Jiang . Rate of approximaton by some neural network operators. AIMS Mathematics, 2024, 9(11): 31679-31695. doi: 10.3934/math.20241523
  • In this paper, a class of Stancu type Szász-Mirakjan operators are introduced. The approximation properties of the operators are discussed using tools of modulus of continuity, modulus of smoothness and K-functional. The estimation of the Lipschitz function class by the operators is also studied. Later, the Voronvskaya type asymptotic expansion of the operators is established. Finally, we compare the convergence of these newly defined operators for certain functions with certain graphs.



    In recent years, approximation theory has attracted the attention of many mathematicians, especially in the field of mathematical analysis. In this context, many new positive and linear operators have been introduced and their approximate properties have been given. In this direction, Bernstein's main work on Bernstein polynomials has long maintained the primary position of approximation theory. More specifically, the Bernstein polynomial is defined as

    Bn(σ,x)=nk=0σ(kn)Cknxk(1x)nk,x[0,1]

    for any σC[0,1].

    In 1950, Szász [1] introduced the generalization of Bernstein polynomials to infinite intervals called the classical Szász-Mirakyan operators which are defined by

    Sn(σ,x)=k=0σ(kn)sn,k(x) (1.1)

    where sn,k(x)=enx(nx)k/k!.

    The operators Sn have always been a research hotspot as can be seen in [2,3,4,5,6,7,8].

    In 1969, Stancu hoped to select nodes in a different way to achieve greater flexibility. In this way, he defined and studied the following linear and positive operators which are defined by [9]

    Bγ,δn(σ,x)=nk=0σ(k+γn+δ)Cknxk(1x)nk

    where x[0,1],0γδ. When γ=δ=0, Bγ,δn become to the classical Bernstein polynomials.

    Many scholars have shown great interest in the study of Stancu type operators [10,11,12].

    Bézier curve with shape parameters is one of the important research fields of computer graphics and computer aided geometric design (CAGD). Because of its simple and stable calculation, Bézier curve is widely used in fuselage design, numerical solution of partial differential equations, networks, animation, robotics and other fields. The selection of shape parameters is important so Bézier curves and surfaces can be represented by their control grids.

    Recently, Ye [13] presented the Bézier basis with shape parameter λ[1,1]. In this article, the authors constructed a new class of basis functions for single shape parameter curves and used these basis functions to provide a practical curve modeling algorithm. Later, Cai [14] introduced λ-Bernstein operators and studied some approximation properties of the operators. Finally, Cai gave some graphs and numerical examples to show the convergence of λ-Bernstein operators. They have also shown that in some cases the errors were smaller than the classical Bernstein operators. Many scholars have done research on this type of operators [15,16,17,18,19,20].

    Influenced by the construction of this type operators based on parameter λ, Qi [21] introduced the λ-Szász-Mirakjan operators as follows,

    Sn,λ(σ,x)=k=0σ(kn)s(λ)n,k(x) (1.2)

    where λ[1,1] and

    s(λ)n,0(x)=sn,0(x)λn+1sn+1,1(x),s(λ)n,j(x)=sn,j(x)+λ(n2j+1n21sn+1,j(x)n2j1n21sn+1,j+1(x)),

    j=1,2,,,x[0,).

    In [21], the Korovkin type approximation theorem, the Voronovskaja-type asymptotic formula and the Grüss-Voronovskaja type theorem for the operators Sn,λ were investigated. Then, Aslan [22,23] studied the Kantorovich type and Durrmeyer type of operators Sn,λ, respectively. In order to prove the accuracy and effectiveness of the discussed operators, Aslan provided a comparison of the convergence of the constructed operators for certain functions under certain parameters and provided some graphical explanations.

    Based on the work of Qi and Aslan, we propose a new family of Stancu operators Sγ,δn,λ(σ,x) in the following way:

    Sγ,δn,λ(σ,x)=k=0σ(k+γn+δ)s(λ)n,k(x). (1.3)

    Obviously, when γ=δ=0 the operators Sγ,δn,λ reduce to the operators Sn,λ defined by (1.2). When α=β=λ=0, the operators Sγ,δn,λ reduce to the operators Sn defined by (1.1).

    This article is organized in this way. First, the authors caculate the first to fourth moments of the operators. In the second section, by tools such as modulus of continuity and K-functional the approximation properties of the operators are discussed. The estimation of the Lipschitz function class by the operators is also studied. Later, the Voronvskaya type asymptotic expansion of the operators is established. Finally, we compare the convergence of these newly defined operators for certain functions with certain graphs.

    Our results are based on the following lemmas.

    Lemma 2.1. ([21]) For x[0,),ei=ti,i=0,1,2, we have the following equalities:

    Sn,λ(e0,x)=1,
    Sn,λ(e1,x)=x+λ[1e(n+1)x2xn(n1)],
    Sn,λ(e2,x)=x2+xn+λ[e(n+1)x1+2nx4(n+1)x2n2(n1)].

    Lemma 2.2. Let the operators Sγ,δn,λ be defined by (1.3), we have

    Sγ,δn,λ(e0,x)=1,
    Sγ,δn,λ(e1,x)=x+γδxn+δ+λ[1e(n+1)x2x(n+δ)(n1)]=ϖn,γ,δ,λ(x),
    Sγ,δn,λ(e2,x)=x2+γ2+n(2γ+1)x(2nδ+δ2)x2(n+δ)2+λ[(2γ1)(1e(n+1)x)+(2n4γ)x4(n+1)x2(n+δ)2(n1)].

    Proof. By Lemma 2.1, we have

    Sγ,δn,λ(e0,x)=i=0s(λ)n,i(x)=Sn,λ(e0,x)=1.
    Sγ,δn,λ(e1,x)=i=0i+γn+δs(λ)n,i(x)=nn+δSn,λ(e1,x)+γn+δSn,λ(e0,x)=x+γδxn+δ+λ[1e(n+1)x2x(n+δ)(n1)].
    Sγ,δn,λ(e2,x)=i=0(i+γn+δ)2s(λ)n,i(x)=n2(n+δ)2Sn,λ(e2,x)+2nγ(n+δ)2Sn,λ(e1,x)+γ2(n+δ)2Sn,λ(e0,x)=x2+γ2+n(2γ+1)x(2nδ+δ2)x2(n+δ)2+λ[(2γ1)(1e(n+1)x)+(2n4γ)x4(n+1)x2(n+δ)2(n1)].

    Using a completely similar derivation method we can get the expression of Sγ,δn,λ(e3,x) and Sγ,δn,λ(e4,x). Here, we omit it.

    From Lemma 2.2 and simple calculation, we can get the following.

    Lemma 2.3. For x[0,), we have

    Sγ,δn,λ(tx,x)=γδxn+δ+λ[1e(n+1)x2x(n+δ)(n1)], (2.1)
    Sγ,δn,λ((tx)2,x)=ξn,γ,δ,λ(x), (2.2)
    Sγ,δn,λ((tx)4,x)=O(n2), (2.3)
    limnnSγ,δn,λ(tx,x)=γδx, (2.4)
    limnnSγ,δn,λ((tx)2,x)=x (2.5)

    where ξn,γ,δ,λ(x) is defined as follows

    ξn,γ,δ,λ(x)=γ2+(n2γδ)x+δ2x2(n+δ)2+λ[(2γ12x(n+δ))(1e(n+1)x)+(2n4γ)x4nx2(n+δ)2(n1)].

    Lemma 2.4. For x[0,), we have

    Sγ,δn,λ(|tx|,x)ξn,γ,δ,λ(x). (2.6)

    Proof. Because of Sγ,δn,λ(1,x)=1, by Cauchy-Schwarz inequality and (2.2) we get

    Sγ,δn,λ(|tx|,x)Sγ,δn,λ((tx)2,x)Sγ,δn,λ(1,x)=ξn,γ,δ,λ(x).

    Let CB[0,) be defined as the space of bounded and uniformly continuous functions σ on [0,), endowed with the norm σ=supx[0,)|σ|.

    Theorem 3.1. For σCB[0,), x[0,), the following inequality holds

    Sγ,δn,λ(σ,x)σ. (3.1)

    Proof. Since Sγ,δn,λ(1,x)=1, we get

    Sγ,δn,λ(σ,x)Sγ,δn,λ(1,x)σ=σ.

    Theorem 3.2. For σCB[0,), x[0,), the following equality holds

    limnSγ,δn,λ(σ,x)=σ(x). (3.2)

    Proof. By Lemma 2.2, we get

    limnSγ,δn,λ(ek,x)=xk,k=0,1,2.

    The Korovkin theorem [24] is applied to obtain the conclusion.

    Theorem 3.3. Let σCB[0,), τ>0 and

    ω(σ,τ)=sup0<ϵτsupx,x+ϵ[0,)|σ(x+ϵ)σ(x)|.

    When n sufficiently large we have

    |Sγ,δn,λ(σ,x)σ(x)|2ω(σ,ξn,γ,δ,λ(x)).

    Proof. For ν>0 and ρ>0, it is widely known that ω(σ,νρ)(ρ+1)ω(σ,ν). So, we get

    |Sγ,δn,λ(σ,x)σ(x)||Sγ,δn,λ(|σ(t)σ(x)|,x)||Sγ,δn,λ(ω(σ,|tx|),x)|=|Sγ,δn,λ(ω(σ,|tx|νν),x)||Sγ,δn,λ(ω(σ,ν)(1+|tx|ν),x)|=ω(σ,ν)(1+1νSγ,δn,λ(|tx|,x))ω(σ,ν)(1+1νξn,γ,δ,λ(x)).

    The last inequality is obtained from (2.6). Let ν=ξn,γ,δ,λ(x), we get Theorem 3.3 immediately.

    For τ>0 and W2[0,)={g|g,gCB[0,)}, the appropriate Peetre's K-functional is defined by

    K2(σ,τ)=infgW2[0,){σg+τg}.

    Let

    ω2(σ,τ)=sup0<|h|τsupx,x+h,x+2h[0,)|σ(x+2h)2σ(x+h)+σ(x)|

    where ω2 is the second order modulus of continuity of σCB[0,).

    From [25], there exists an absolute constant D>0 such that

    K2(σ,τ)Dω2(σ,τ). (3.3)

    Theorem 3.4. For σCB[0,) there exists an absolute constant D>0 such that

    |Sγ,δn,λ(σ,x)σ(x)|Dω2(σ,12ξn,γ,δ,λ(x)+(ϖn,γ,δ,λ(x)x)2)                              +ω(σ,ϖn,γ,δ,λ(x)x). (3.4)

    Proof. We introduce the auxiliary operators

    ˜Sγ,δn,λ(σ,x)=Sγ,δn,λ(σ,x)+σ(x)σ(ϖn,γ,δ,λ(x)). (3.5)

    By Lemma 2.2, we get

    ˜Sγ,δn,λ(1,x)=Sγ,δn,λ(1,x)=1, (3.6)
    ˜Sγ,δn,λ(t,x)=Sγ,δn,λ(t,x)+xϖn,γ,δ,λ(x)=x. (3.7)

    Let gW2. By Taylor's expansion, we get

    g(t)=g(x)+g(x)(tx)+tx(tu)g(u)du,x,t[0,).

    Apply the operators ˜Sγ,δn,λ to the above equality and note that (3.5)–(3.7), we have

    ˜Sγ,δn,λ(g,x)=g(x)+˜Sγ,δn,λ(tx(tu)g(u)du,x)=g(x)+Sγ,δn,λ(tx(tu)g(u)du,x)ϖn,γ,δ,λ(x)x(ϖn,γ,δ,λ(x)u)g(u)du.

    So,

    |˜Sγ,δn,λ(g,x)g(x)|Sγ,δn,λ(tx|tu||g(u)|du,x)+|ϖn,γ,δ,λ(x)x|ϖn,γ,δ,λ(x)u||g(u)|du|g{Sγ,δn,λ((tx)2,x)+(ϖn,γ,δ,λ(x)x)2}=g{ξn,γ,δ,λ(x)+(ϖn,γ,δ,λ(x)x)2}.

    By (3.5) and Theorem 3.1, we get

    |˜Sγ,δn,λ(σ,x)||Sγ,δn,λ(σ,x)|+|σ(x)|+|σ(ϖn,γ,δ,λ(x))|3σ.

    So,

    |Sγ,δn,λ(σ,x)σ(x)||˜Sγ,δn,λ(σ,x)σ(x)+σ(x)σ(ϖn,γ,δ,λ(x))||˜Sγ,δn,λ(σg,x)|+|˜Sγ,δn,λ(g,x)g(x)|+|σ(x)g(x)|+|σ(x)σ(ϖn,γ,δ,λ(x))|4σg+g{ξn,γ,δ,λ(x)+(ϖn,γ,δ,λ(x)x)2}+ω(σ,ϖn,γ,δ,λ(x)x).

    Taking the infimum on the right hand side over all gW2, we obtain

    |Sγ,δn,λ(σ,x)σ(x)|4K2(σ,14{ξn,γ,δ,λ(x)+(ϖn,γ,δ,λ(x)x)2})+ω(σ,ϖn,γ,δ,λ(x)x).

    By the inequality of (3.3), we get Theorem 3.4 immediately.

    Remark 3.1. When γ=δ=0, Theorem 3.4 is the form of the Theorem 3.2 of Qi [21].

    Let ϕ(x)=x and σCB[0,). The first order Ditzian-Totik modulus of smoothness and corresponding K-functional are given by

    ωϕ(σ,τ)=sup0<hτ|σ(x+hϕ(x)2)σ(xhϕ(x)2)|,x±hϕ(x)2[0,)

    and

    Kϕ(σ,τ)=infgWϕ[0,){σg+τϕg}(τ>0),

    respectively. Here, Wϕ[0,)={g|gAC[0,),ϕg<} means that g is differentiable and absolutely continuous on every compact subset of [0,). By [26], there exists a constant E>0 such that

    Kϕ(σ,τ)Eωϕ(σ,τ). (3.8)

    Theorem 3.5. For σCB[0,) there exists an absolute constant E>0 such that

    |Sγ,δn,λ(σ,x)σ(x)|Eωϕ(σ,ξn,γ,δ,λ(x)x). (3.9)

    Proof. Applying the operators Sγ,δn,λ(,x) to the representation

    g(t)=g(x)+txg(u)du,

    we have

    Sγ,δn,λ(g,x)=g(x)+Sγ,δn,λ(txg(u)du,x).

    For any x,t(0,), we can get

    |txg(u)du|=|txg(u)ϕ(u)ϕ(u)du|ϕg|tx1ϕ(u)du|2ϕg|tx|ϕ(x).

    By (2.6), we have

    |Sγ,δn,λ(g,x)g(x)|2ϕgϕ1(x)Sγ,δn,λ(|tx|,x)2ϕgϕ1(x)ξn,γ,δ,λ(x).

    Thus,

    |Sγ,δn,λ(σ,x)σ(x)||Sγ,δn,λ(σg,x)|+|σg|+|Sγ,δn,λ(g,x)g(x)|2σg+2ϕgϕ1(x)ξn,γ,δ,λ(x).

    Taking the infimum on the right hand side over all gWϕ(0,), we can get

    |Sγ,δn,λ(σ,x)f(x)|2Kϕ(σ,ϕ1(x)ξn,γ,δ,λ(x)).

    By (3.8) and the above inequality, we get (3.9) immediately. This completes the proof of Theorem 3.5.

    Now we compute the rate of convergence of the operators Sγ,δn,λ(σ,x) for the Lipschitz class LipM(κ)(0<κ1,M>0). As usual, we say that a function σ belongs to LipM(κ) if the inequality

    |σ(t)σ(x)|M|tx|κ

    holds for all t,xR.

    Theorem 3.6. For σLipM(κ)CB[0,) and x[0,), we have

    |Sγ,δn,λ(σ,x)σ(x)|M[ξn,γ,δ,λ(x)]κ/2. (3.10)

    Proof. Let e1=2κ,e2=22κ. Then, 1e1+1e2=1. By the H¨older inequality, we get

    |Sγ,δn,λ(σ,x)σ(x)|Sγ,δn,λ(|σ(t)σ(x)|,x)MSγ,δn,λ(|tx|κ,x)=MSγ,δn,λ(|tx|κ1,x)M(Sγ,δn,λ((tx)κe1,x))1/e1(Sγ,δn,λ(1e2,x))1/e2=M(Sγ,δn,λ((tx)2,x))1/e11=M[ξn,γ,δ,λ(x)]κ/2.

    Remark 3.2. When γ=δ=0, Theorem 3.6 is the form of the Theorem 3.4 of Qi [21].

    Lastly, we will consider the Voronvskaya type asymptotic expansion of the operators Sγ,δn,λ(σ,x).

    Theorem 3.7. Let σ,σCB[0,), we have

    limnn[Sγ,δn,λ(σ,x)σ(x)]=(γδx)σ(x)+x2σ(x).

    Proof. In view of Taylor's expansion formula, we have

    σ(t)=σ(x)+σ(x)(tx)+12σ(x)(tx)2+η(t;x)(tx)2

    where η(t;x) ia a Peano of the rest term, η(t;x)C[0,) and limtxη(t;x)=0.

    So,

    n[Sγ,δn,λ(σ,x)σ(x)]=nσ(x)Sγ,δn,λ(tx,x)+n2σ(x)Sγ,δn,λ((tx)2,x)                     +nSγ,δn,λ(η(t;x)(tx)2,x). (3.11)

    By Cauchy-Schwarz inequality, we have

    Sγ,δn,λ(η(t;x)(tx)2,x)Sγ,δn,λ(η2(t;x),x)Sγ,δn,λ((tx)4,x). (3.12)

    Noting η2(x;x)=0, η2(t;x)C[0,) and Theorem 3.2, we get

    limnSγ,δn,λ(η2(t;x),x)=η2(x;x)=0. (3.13)

    By (2.3), (3.12) and (3.13), we get

    limnnSγ,δn,λ(η(t;x)(tx)2,x)=0. (3.14)

    Theorem 3.7 is obtained by (2.4), (2.5), (3.11) and (3.14).

    In this section, we show several graphics to present the convergence of operators (1.3) to certain functions with different values of γ,δ,n and λ.

    In Figure 1, we choose the function σ(x)=ex (black), λ=0.9,γ=1,δ=2, n=10 (red), n=30 (blue) and n=50 (green).

    Figure 1.  The convergence of Sγ,δn,λ(σ,x) to σ(x)=ex for λ=0.9,γ=1,δ=2.

    In Figure 2, we choose the function σ(x)=cos(3πx) (black), λ=0.5,γ=1,δ=2, n=10 (red), n=30 (blue) and n=50 (green).

    Figure 2.  The convergence of Sγ,δn,λ(σ,x) to σ(x)=cos(3πx) for λ=0.5,γ=1,δ=2.

    In Figure 3, we choose the function σ(x)=3πxsin(3πx) (black), λ=0.9,γ=2,δ=3, n=10 (red), n=50 (blue) and n=90 (green).

    Figure 3.  The convergence of Sγ,δn,λ(σ,x) to σ(x)=3πxsin(3πx) for λ=0.9,γ=2,δ=3.

    It is clear from Figures 13 that for the different values of λ as the values of n increases the convergence of operators (1.3) to the functions σ(x) becomes better.

    In this paper, we introduce a class of Stancu type Szász Mirakjan operators and discuss their approximation properties using tools such as modulus of continuity, modulus of smoothness and K-functional. In addition, the estimation of Lipschitz function classes by the operators is also studied. Later, the Voronvskaya type asymptotic expansion of the operators is established. Finally, we give the comparison of the convergence of operators (1.3) to certain functions with some graphics.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2020J01783) and the Program for New Century Excellent Talents in Fujian Province University. We also thank Fujian Provincial Key Laboratory of Data-Intensive Computing, Fujian University Laboratory of Intelligent Computing and Information Processing and Fujian Provincial Big Data Research Institute of Intelligent Manufacturing of China. This work is also supported by the Discipline leader training programs of Yang-en University.

    The authors would like to thank the referees for the helpful suggestions.

    The authors declare no conflict of interest.



    [1] O. Szász, Generalization of the Bernstein polynomials to the infinite interval, J. Res. Nat. Bur. Stand., 45 (1950), 239–245.
    [2] F. Cheng, On the rate of convergence of the Szász-Mirakyan operator for functions of bounded variation, J. Approx. Theory, 40 (1984), 226–241. https://doi.org/10.1016/0021-9045(84)90064-9 doi: 10.1016/0021-9045(84)90064-9
    [3] D. X. Zhou, Weighted approximation by Szász-Mirakjan operators, J. Approx. Theory, 76 (1994), 393–402. https://doi.org/10.1006/jath.1994.1025 doi: 10.1006/jath.1994.1025
    [4] V. Gupta, The bézier variant of Kantorovitch operators, Comput. Math. Appl., 47 (2004), 227–232. https://doi.org/10.1016/S0898-1221(04)90019-3 doi: 10.1016/S0898-1221(04)90019-3
    [5] V. Gupta, D. Soybaş, Approximation by complex genuine hybrid operators, Appl. Math. Comput., 244 (2014), 526–532. https://doi.org/10.1016/j.amc.2014.07.025 doi: 10.1016/j.amc.2014.07.025
    [6] M. Heilmann, I. Rasa, A nice representation for a link between Baskakov- and Szász-Mirakjan-Durrmeyer operators and their Kantorovich variants, Results Math., 74 (2019). https://doi.org/10.48550/arXiv.1809.05661 doi: 10.48550/arXiv.1809.05661
    [7] A. M. Acu, G. Tachev, Yet another new variant of Szász-Mirakyan operator, Symmetry, 13 (2021), 2018. https://doi.org/10.3390/sym13112018 doi: 10.3390/sym13112018
    [8] L. S. Xie, S. L. Wang, Strong converse inequality for linear combinations of Szász-Mirakjan operators, J. Approx. Theory, 273 (2022). https://doi.org/10.1016/j.jat2021.105651 doi: 10.1016/j.jat2021.105651
    [9] D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai, 14 (1969), 31–45.
    [10] O. Doǧru, C. Muraru, Statistical approximation by Stancu type bivariate generalization of Meyer-König and Zeller type operators, Math. Comput. Model., 48 (2008), 961–968. https://doi.org/10.1016/j.mcm.2007.12.005 doi: 10.1016/j.mcm.2007.12.005
    [11] A. Aral, V. Gupta, On the q analogue of Stancu-Beta operators, Appl. Math. Lett., 25 (2012), 67–71. https://doi.org/10.1016/j.aml.2011.07.009 doi: 10.1016/j.aml.2011.07.009
    [12] A. Kumar, A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math., 11 (2021). https://doi.org/10.1016/j.rinam.2021.100158 doi: 10.1016/j.rinam.2021.100158
    [13] Z. Ye, X. Long, X. M. Zeng, Adjustment algorithms for Bézier curve and surface, In: International Conference on Computer Science and Education, 2010.
    [14] Q. B. Cai, B. Y. Lian, G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl., 61 (2018). https://doi.org/10.1186/s13660-018-1653-7 doi: 10.1186/s13660-018-1653-7
    [15] Q. B. Cai, W. T. Cheng, Convergence of λ-Bernstein operators based on (p,q)-integers, J. Inequal. Appl., 35 (2020). https://doi.org/10.1186/s13660-020-2309-y doi: 10.1186/s13660-020-2309-y
    [16] Q. B. Cai, R. Aslan, On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry, 13 (2021), 1919. https://doi.org/10.3390/sym13101919 doi: 10.3390/sym13101919
    [17] P. N. Agrawal, B. Baxhaku, R. Shukla, A new kind of Bi-variate λ-Bernstein-Kantorovich type operator with shifted knots and its associated GBS form, Math. Fdn. Comput., 5 (2022), 157–172. https://doi.org/10.3934/mfc.2021025 doi: 10.3934/mfc.2021025
    [18] P. N. Agrawal, V. A. Radu, J. K. Singh, Better numerical approximation by λ-Durrmeyer-Bernstein type operators, Filomat, 35 (2021), 1405–1419. https://doi.org/10.2298/FIL2104405R doi: 10.2298/FIL2104405R
    [19] M. Mursaleen, A. A. H. A. Abied, M. A. Salman, Chlodowsky type λ,q-Bernstein-Stancu operators, Azerbaijan J. Math., 10 (2020), 97–110. https://doi.org/75–101.10.1515/jaa-2020-2009
    [20] R. Aslan, M. Mursaleen, Some approximation results on a class of new type λ-Bernstein polynomials, J. Math. Inequal., 16 (2022), 445–462. https://doi.org/10.7153/jmi-2022-16-32 doi: 10.7153/jmi-2022-16-32
    [21] Q. Qi, D. Guo, G. Yang, Approximation properties of λ-Szász-Mirakian operators, Int. J. Eng. Res., 12 (2019), 662–669.
    [22] R. Aslan, Some approximation results on λ-Szász-Mirakjan-Kantorivich operators, Fund. J. Math. Appl., 4 (2021), 150–158. https://doi.org/10.33401/fujma.903140 doi: 10.33401/fujma.903140
    [23] R. Aslan, Approximation by Szász-Mirakjan-Durrmeyer operators based on shape parameter λ, Commun. Fac. Sci. Univ., 71 (2022), 407–421. https://doi.org/10.31801/cfsuasmas.941919 doi: 10.31801/cfsuasmas.941919
    [24] P. P. Korovkin, Linear operators and approximation theory, Delhi: Hindustan Pub Corp, 1960.
    [25] R. A. Devore, G. G. Lorentz, Construtive approximation, Berlin: Springer-Verlag, 1993.
    [26] Z. Ditzian, V. Totik, Moduli of smoothness, New York: Springer, 1987.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1539) PDF downloads(93) Cited by(0)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog