Research article Special Issues

Approximation properties of Stancu type Szász-Mirakjan operators

  • Received: 16 May 2023 Revised: 25 June 2023 Accepted: 29 June 2023 Published: 10 July 2023
  • MSC : 41A10, 41A25, 41A36

  • In this paper, a class of Stancu type Szász-Mirakjan operators are introduced. The approximation properties of the operators are discussed using tools of modulus of continuity, modulus of smoothness and K-functional. The estimation of the Lipschitz function class by the operators is also studied. Later, the Voronvskaya type asymptotic expansion of the operators is established. Finally, we compare the convergence of these newly defined operators for certain functions with certain graphs.

    Citation: Bo-Yong Lian, Qing-Bo Cai. Approximation properties of Stancu type Szász-Mirakjan operators[J]. AIMS Mathematics, 2023, 8(9): 21769-21780. doi: 10.3934/math.20231110

    Related Papers:

  • In this paper, a class of Stancu type Szász-Mirakjan operators are introduced. The approximation properties of the operators are discussed using tools of modulus of continuity, modulus of smoothness and K-functional. The estimation of the Lipschitz function class by the operators is also studied. Later, the Voronvskaya type asymptotic expansion of the operators is established. Finally, we compare the convergence of these newly defined operators for certain functions with certain graphs.



    加载中


    [1] O. Szász, Generalization of the Bernstein polynomials to the infinite interval, J. Res. Nat. Bur. Stand., 45 (1950), 239–245.
    [2] F. Cheng, On the rate of convergence of the Szász-Mirakyan operator for functions of bounded variation, J. Approx. Theory, 40 (1984), 226–241. https://doi.org/10.1016/0021-9045(84)90064-9 doi: 10.1016/0021-9045(84)90064-9
    [3] D. X. Zhou, Weighted approximation by Szász-Mirakjan operators, J. Approx. Theory, 76 (1994), 393–402. https://doi.org/10.1006/jath.1994.1025 doi: 10.1006/jath.1994.1025
    [4] V. Gupta, The bézier variant of Kantorovitch operators, Comput. Math. Appl., 47 (2004), 227–232. https://doi.org/10.1016/S0898-1221(04)90019-3 doi: 10.1016/S0898-1221(04)90019-3
    [5] V. Gupta, D. Soybaş, Approximation by complex genuine hybrid operators, Appl. Math. Comput., 244 (2014), 526–532. https://doi.org/10.1016/j.amc.2014.07.025 doi: 10.1016/j.amc.2014.07.025
    [6] M. Heilmann, I. Rasa, A nice representation for a link between Baskakov- and Szász-Mirakjan-Durrmeyer operators and their Kantorovich variants, Results Math., 74 (2019). https://doi.org/10.48550/arXiv.1809.05661 doi: 10.48550/arXiv.1809.05661
    [7] A. M. Acu, G. Tachev, Yet another new variant of Szász-Mirakyan operator, Symmetry, 13 (2021), 2018. https://doi.org/10.3390/sym13112018 doi: 10.3390/sym13112018
    [8] L. S. Xie, S. L. Wang, Strong converse inequality for linear combinations of Szász-Mirakjan operators, J. Approx. Theory, 273 (2022). https://doi.org/10.1016/j.jat2021.105651 doi: 10.1016/j.jat2021.105651
    [9] D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai, 14 (1969), 31–45.
    [10] O. Doǧru, C. Muraru, Statistical approximation by Stancu type bivariate generalization of Meyer-König and Zeller type operators, Math. Comput. Model., 48 (2008), 961–968. https://doi.org/10.1016/j.mcm.2007.12.005 doi: 10.1016/j.mcm.2007.12.005
    [11] A. Aral, V. Gupta, On the q analogue of Stancu-Beta operators, Appl. Math. Lett., 25 (2012), 67–71. https://doi.org/10.1016/j.aml.2011.07.009 doi: 10.1016/j.aml.2011.07.009
    [12] A. Kumar, A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math., 11 (2021). https://doi.org/10.1016/j.rinam.2021.100158 doi: 10.1016/j.rinam.2021.100158
    [13] Z. Ye, X. Long, X. M. Zeng, Adjustment algorithms for Bézier curve and surface, In: International Conference on Computer Science and Education, 2010.
    [14] Q. B. Cai, B. Y. Lian, G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 61 (2018). https://doi.org/10.1186/s13660-018-1653-7 doi: 10.1186/s13660-018-1653-7
    [15] Q. B. Cai, W. T. Cheng, Convergence of $\lambda$-Bernstein operators based on $(p, q)$-integers, J. Inequal. Appl., 35 (2020). https://doi.org/10.1186/s13660-020-2309-y doi: 10.1186/s13660-020-2309-y
    [16] Q. B. Cai, R. Aslan, On a new construction of generalized q-Bernstein polynomials based on shape parameter $\lambda$, Symmetry, 13 (2021), 1919. https://doi.org/10.3390/sym13101919 doi: 10.3390/sym13101919
    [17] P. N. Agrawal, B. Baxhaku, R. Shukla, A new kind of Bi-variate $\lambda$-Bernstein-Kantorovich type operator with shifted knots and its associated GBS form, Math. Fdn. Comput., 5 (2022), 157–172. https://doi.org/10.3934/mfc.2021025 doi: 10.3934/mfc.2021025
    [18] P. N. Agrawal, V. A. Radu, J. K. Singh, Better numerical approximation by $\lambda$-Durrmeyer-Bernstein type operators, Filomat, 35 (2021), 1405–1419. https://doi.org/10.2298/FIL2104405R doi: 10.2298/FIL2104405R
    [19] M. Mursaleen, A. A. H. A. Abied, M. A. Salman, Chlodowsky type $\lambda, q$-Bernstein-Stancu operators, Azerbaijan J. Math., 10 (2020), 97–110. https://doi.org/75–101.10.1515/jaa-2020-2009
    [20] R. Aslan, M. Mursaleen, Some approximation results on a class of new type $\lambda$-Bernstein polynomials, J. Math. Inequal., 16 (2022), 445–462. https://doi.org/10.7153/jmi-2022-16-32 doi: 10.7153/jmi-2022-16-32
    [21] Q. Qi, D. Guo, G. Yang, Approximation properties of $\lambda$-Szász-Mirakian operators, Int. J. Eng. Res., 12 (2019), 662–669.
    [22] R. Aslan, Some approximation results on $\lambda$-Szász-Mirakjan-Kantorivich operators, Fund. J. Math. Appl., 4 (2021), 150–158. https://doi.org/10.33401/fujma.903140 doi: 10.33401/fujma.903140
    [23] R. Aslan, Approximation by Szász-Mirakjan-Durrmeyer operators based on shape parameter $\lambda$, Commun. Fac. Sci. Univ., 71 (2022), 407–421. https://doi.org/10.31801/cfsuasmas.941919 doi: 10.31801/cfsuasmas.941919
    [24] P. P. Korovkin, Linear operators and approximation theory, Delhi: Hindustan Pub Corp, 1960.
    [25] R. A. Devore, G. G. Lorentz, Construtive approximation, Berlin: Springer-Verlag, 1993.
    [26] Z. Ditzian, V. Totik, Moduli of smoothness, New York: Springer, 1987.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1162) PDF downloads(89) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog