This work focuses on the study of approximation properties of functions by Szász type operators involving Frobenius–Euler–Simsek-type polynomials, which have become more popular recently because of their special characteristics and functional organization. The convergence properties such as uniformly convergence and pointwise convergence in terms of modulus of continuity and Peetre-$ \it K $ functional are investigated with the help of these sequences of operators in depth. This paper also includes the estimation of the error of the approximation of these sequences of operators to some particular class of functions. The estimates are depicted using the Maple scientific computing program and presented in tables.
Citation: Erkan Agyuz. On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials[J]. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367
This work focuses on the study of approximation properties of functions by Szász type operators involving Frobenius–Euler–Simsek-type polynomials, which have become more popular recently because of their special characteristics and functional organization. The convergence properties such as uniformly convergence and pointwise convergence in terms of modulus of continuity and Peetre-$ \it K $ functional are investigated with the help of these sequences of operators in depth. This paper also includes the estimation of the error of the approximation of these sequences of operators to some particular class of functions. The estimates are depicted using the Maple scientific computing program and presented in tables.
[1] | S. Bernštein, Démonstration du théoreme de Weierstrass fondée sur le calcul des probabilities, Comm. Soc. Math. Kharkov, 13 (1912), 1–2. |
[2] | X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244–261. https://doi.org/10.1016/j.jmaa.2016.12.075 doi: 10.1016/j.jmaa.2016.12.075 |
[3] | S. Ostrovska, On the Lupaş $q$-analogue of the Bernstein operator, Rocky Mt. J. Math., 36 (2006), 1615–1629. |
[4] | D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type operators which preserve polynomials, Comput. Math. Appl., 62 (2011), 158–163. https://doi.org/10.1016/j.camwa.2011.04.063 doi: 10.1016/j.camwa.2011.04.063 |
[5] | H. M. Srivastava, F. Özger, S. A. Mohiuddine, Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter $\lambda$, Symmetry, 11 (2019), 316. https://doi:10.3390/sym11030316 doi: 10.3390/sym11030316 |
[6] | J. C. Mason, D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2002. |
[7] | T. J. Rivlin, Chebyshev polynomials, Courier Dover Publications, 2020. |
[8] | L. V. Kantorovich, Sur certains développements suivant les polynmes de la forme de B. bernstein I, Dokl. Akad. Nauk. SSSR., 11 (1930), 563–568. |
[9] | L. V. Kantorovich, Sur certains développements suivant les polynmes de la forme de B. bernstein Ⅱ, Dokl. Akad. Nauk. SSSR., 11 (1930), 595–600. |
[10] | Ç. Atakut, İ. Büyükyazıcı, Approximation by Kantorovich-Szász type operators based on Brenke type polynomials, Numer. Func. Anal. Optim., 37 (2016), 1488–1502. https://doi.org/10.1080/01630563.2016.1216447 doi: 10.1080/01630563.2016.1216447 |
[11] | M. Sofyalıoğlu, K. Kanat, Approximation by Szász-Baskakov operators based on Boas-Buck-type polynomials, Filomat, 36 (2022), 3655–3673. |
[12] | M. Menekşe Yılmaz, Rate of convergence by Kantorovich type operators involving adjoint Bernoulli polynomials, Publ. Inst. Math., 114 (2023), 51–62. |
[13] | Y. Simsek, Applications of constructed new families of generating‐type functions interpolating new and known classes of polynomials and numbers, Math. Methods Appl. Sci., 44 (2021), 11245–11268. https://doi.org/10.1002/mma.7485 doi: 10.1002/mma.7485 |
[14] | H. Bohman, On approximation of continuous and of analytic functions, Ark. Mat., 2 (1951), 43–56. |
[15] | R. Păltănea, Approximation theory using positive linear operators, 3 Eds., Birkhauser, Boston-USA, 2004. https://doi.org/10.1007/978-1-4612-2058-9 |
[16] | V. Gupta, M. T. Rassias, Moments of linear positive operators and approximation, Springer, 2019. https://doi.org/10.1007/978-3-030-19455-0 |
[17] | F. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin-New York, 1994. https://doi.org/10.1515/9783110884586 |
[18] | G. A. Anastassiou, S. G. Gal, Approximation theory: moduli of continuity and global smoothness preservation, Birkhauser, Boston-USA, 2000. https://doi.org/10.1007/978-1-4612-1360-4 |
[19] | R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften, Springer, 1993. |
[20] | Z. Ditzian, V. Totik, Moduli of smoothness, Vol. 9, Springer Science and Business Media, 2012. |
[21] | V. A. Steklov, On the asymptotic representation of certain functions defined by a linear differential equation of the second order, and their application to the problem of expanding an arbitrary function into a series of these functions (In Russian), Khar'kov, 1957. |
[22] | V. V. Zhuk, Functions of the Lip1 class and S. N. Bernstein's polynomials (Russian), Vestnik Leningrad, Univ. Mat. Mekh. Astronom, 1 (1989), 25–30; translation in Vestnik Leningrad Univ. Math., 22 (1989), 38–44. |
[23] | T. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041 |
[24] | T. Kim, D. S. Kim, Representation by degenerate Frobenius-Euler polynomials, Georgian Math. J., 29 (2022), 741–754. https://doi.org/10.1515/gmj-2022-2167 doi: 10.1515/gmj-2022-2167 |
[25] | J. Choi, D. S. Kim, T. Kim, Y. H. Kim, A note on some identities of Frobenius-Euler numbers and polynomials, Int. J. Math. Math. Sci., 2012 (2012), 1–9. https://doi.org/10.1155/2012/861797 doi: 10.1155/2012/861797 |
[26] | D. S. Kim, T. Kim, S. H. Lee, Umbral calculus and the Frobenius‐Euler polynomials, Abstr. Appl. Anal., 2013 (2013), 871512. http://doi.org/10.1155/2013/871512 doi: 10.1155/2013/871512 |
[27] | D. S. Kim, T. Kim, Some identities of Frobenius-Euler polynomials arising from umbral calculus, Adv. Differ. Equ., 2012 (2012), 1–10. https://doi.org/10.1186/1687-1847-2012-196 doi: 10.1186/1687-1847-2012-196 |
[28] | T. Kim, T. Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys., 21 (2014), 484–493. https://doi.org/10.1134/S1061920814040062 doi: 10.1134/S1061920814040062 |
[29] | D. S. Kim, T. Kim, S. H. Lee, S. H. Rim, Frobenius-Euler polynomials and umbral calculus in the $p$-adic case, Adv. Differ. Equ., 2012 (2012), 1–11. https://doi.org/10.1186/1687-1847-2012-222 doi: 10.1186/1687-1847-2012-222 |
[30] | D. S. Kim, H. Kim, T. Kim, A note on infinite series whose terms involve truncated degenerate exponentials, Appl. Math. Sci. Eng., 31 (2023), 1–9. https://doi.org/10.1080/27690911.2023.2205643 doi: 10.1080/27690911.2023.2205643 |
[31] | T. Kim, D. S. Kim, On some degenerate differential and degenerate difference operators, Russ. J. Math. Phys., 29 (2022), 37–46. https://doi.org/10.1134/S1061920822010046 doi: 10.1134/S1061920822010046 |
[32] | E. Landau, Einige ungleichungen für zweimal dierentzierban funktionen, Proc. London Math. Soc., s2-13 (1914), 43–49. https://doi.org/10.1112/plms/s2-13.1.43 doi: 10.1112/plms/s2-13.1.43 |