Research article Special Issues

Solution of fractional kinetic equations involving extended (k,τ)-Gauss hypergeometric matrix functions

  • In this work, we define an extension of the k-Wright ((k,τ)-Gauss) hypergeometric matrix function and obtain certain properties of this function. Further, we present this function to achieve the solution of the fractional kinetic equations.

    Citation: Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla. Solution of fractional kinetic equations involving extended (k,τ)-Gauss hypergeometric matrix functions[J]. AIMS Mathematics, 2022, 7(8): 14474-14491. doi: 10.3934/math.2022798

    Related Papers:

    [1] Mohamed Akel, Muajebah Hidan, Salah Boulaaras, Mohamed Abdalla . On the solutions of certain fractional kinetic matrix equations involving Hadamard fractional integrals. AIMS Mathematics, 2022, 7(8): 15520-15531. doi: 10.3934/math.2022850
    [2] Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar . On generalized $\mathtt{k}$-fractional derivative operator. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129
    [3] Mahmoud Abul-Ez, Mohra Zayed, Ali Youssef . Further study on the conformable fractional Gauss hypergeometric function. AIMS Mathematics, 2021, 6(9): 10130-10163. doi: 10.3934/math.2021588
    [4] Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451
    [5] D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115
    [6] Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479
    [7] Abdelhamid Zaidi, Saleh Almuthaybiri . Explicit evaluations of subfamilies of the hypergeometric function $ _3F_2(1) $ along with specific fractional integrals. AIMS Mathematics, 2025, 10(3): 5731-5761. doi: 10.3934/math.2025264
    [8] Hasanen A. Hammad, Manuel De la Sen . Tripled fixed point techniques for solving system of tripled-fractional differential equations. AIMS Mathematics, 2021, 6(3): 2330-2343. doi: 10.3934/math.2021141
    [9] Khadijeh Sadri, David Amilo, Kamyar Hosseini, Evren Hinçal, Aly R. Seadawy . A tau-Gegenbauer spectral approach for systems of fractional integro-differential equations with the error analysis. AIMS Mathematics, 2024, 9(2): 3850-3880. doi: 10.3934/math.2024190
    [10] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
  • In this work, we define an extension of the k-Wright ((k,τ)-Gauss) hypergeometric matrix function and obtain certain properties of this function. Further, we present this function to achieve the solution of the fractional kinetic equations.



    In the history of hypergeometric functions, Gauss first summarized his studies of the hypergeometric functions which have been of great significance for the mathematical modeling of physical phenomena and other applications (see [1,2,3,4,5,6]). The Gauss hypergeometric function is defined by the following power series:

    F(u1,u2,u3;ζ)=j=0(u1)j(u2)j(u3)jζjj!,ζC, (1.1)

    which is absolutely and uniformly convergent if |ζ|<1, and where u1u3 are complex parameters with u3CZ0, where

    (u1)j=Γ(u1+j)Γ(u1)={u1(u1+1)(u1+j1),jN,u1C,1,j=0,u1C{0} (1.2)

    is the Pochhammer symbol (or the shifted factorial) and Γ(v) is the gamma function defined by

    Γ(v)=0θv1eθdθ,vCZ0. (1.3)

    The generalized (Wright) hypergeometric function was first studied by Virchenko et al. [7], as follows:

    2R1(ϑ1,ϑ2;ϑ3;τ;η)=Γ(ϑ3)Γ(ϑ2)j=0(ϑ1)jΓ(ϑ2+τj)Γ(ϑ3+τj)ηjj!,τR+,|η|<1, (1.4)

    where ϑ1ϑ3 are complex parameters such that Re(ϑ1)>0, Re(ϑ2)>0 and Re(ϑ3)>0.

    Recently, various developments and expansions of the Wright (τ-Gauss) hypergeometric function have been archived (see, e.g., [8,9,10,11,12,13]).

    In 1998, Jódar and Cortés [14,15] gave the matrix version of the gamma and beta functions and the Gauss hypergeometric function. These works have been carried out for many special polynomials and functions; see [16]. In [17,18], the authors presented interesting expansions of the k-gamma, k-beta, k-Pochhammer and k-hypergeometric matrix functions. Further, extensions of the gamma, beta, Bessel and hypergeometric matrix functions have been given in [19,20,21,22,23,24,25,26,27,28]. More recently, Bakhet et al. [29] introduced the Wright hypergeometric functions and discussed some of its properties. In a similar vein, Abdalla investigated some fractional operators for Wright hypergeometric matrix functions in [30]. Motivated by these recent studies on the Wright hypergeometric matrix functions, in this manuscript, we introduce the matrix version of new extended Wright hypergeometric functions and investigate some of its properties.

    This manuscript is organized as follows. In Section 2, we define the extended (k,τ)-Wright hypergeometric matrix functions 3W(k,τ)2 and several special cases. Also, we prove some derivative formulas. In Section 3, we discuss the Mellin transform of the extended (k,τ)-Wright hypergeometric matrix functions. Certain integral representations for the extended (k,τ)-Wright hypergeometric matrix functions are established in Section 4. The k-fractional calculus operators for the matrix functions 3W(k,τ)2 are investigated in Section 5. In Section 6, we investigate the solutions of fractional kinetic equations involving the extended (k,τ)-Wright hypergeometric matrix function. Finally, in Section 7, concluding remarks are given.

    For BCm×m, let σ(B) be the set of all eigenvalues of B which is called the spectrum of B. Also, for BCm×m, let

    μ(B):=max{Re(ζ):ζσ(B)}and˜μ(B):=min{Re(ζ):ζσ(B)},

    which imply ˜μ(B)=μ(B). Here, μ(B) is called the spectral abscissa of B, and the matrix B is said to be positive stable if ˜μ(B)>0.

    For kR+, the k-gamma function Γk(ξ) is defined by (see [31])

    Γk(δ)=0θδ1eθkkdθ,δCkZ0. (1.5)

    We note that Γk(δ)Γ(δ), as k1, and (δ)j,k is the k-Pochhammer symbol given by (see [31])

    (δ)j,k=Γk(δ+jk)Γk(δ)={δ(δ+k)(δ+(j1)k),jN,δC,1,j=0,kR+,δC{0}. (1.6)

    Clearly, the case k=1 in (1.6) reduces to the Pochhammer symbol defined in (1.2).

    If B is a positive stable matrix in Cm×m and kR+, then the k-gamma matrix function Γk(B) is well defined, as follows (see [17]):

    Γk(B)=0ewkkwBIdw=kBkkIΓ(Bk),wBI:=exp((BI)lnw). (1.7)

    If B is a matrix in Cm×m such that B+kI is an invertible matrix for every N0 and kR+, then Γk(B) is invertible, its inverse is Γ1k(B), and one finds (see [17])

    (B),k=B(B+kI)(B+(1)kI)=Γk(B+kI)Γ1k(B),N0,kR+. (1.8)

    Remark 1.1. For k=1, (1.7) and (1.8) will reduce to the gamma matrix function Γ(B) and Pochhammer matrix symbol, respectively (see [14]).

    Further, let B be a positive stable matrix in Cm×m. Then an extension of the k-gamma of the matrix argument given by (1.7) is defined in [19] as follows:

    Γρk(B)=0wBIe(wkkρkkwk)dw,ρR+0,kR+. (1.9)

    For α,βC, the k-beta function Bk(α,β) is defined by (see [31])

    Bk(α,β)=1k10yαk1(1y)βk1dy,kR+,Re(α)>0,Re(β)>0. (1.10)

    When k=1 in (1.10) reduces to the following beta function B(α,β),

    B(α,β)=10yα1(1y)β1dy,Re(α)>0,Re(β)>0, (1.11)

    and

    Bk(α,β)=1kB(αk,βk).

    The k-beta matrix function is defined by (see [17,19])

    Bk(E,F)=1k10uEkI(1u)FkIdu,kR+, (1.12)

    where E and F are positive stable matrices in Cm×m. Further, if E and F are diagonalizable matrices in Cm×m such that EF=FE, then (cf. [17,19])

    Bk(E,F)=Γk(E)Γk(F)Γ1k(E+F). (1.13)

    When k=1, (1.12) and (1.13) will reduce to the beta matrix function B(E,F), defined by Jódar and Cortés in [14]. Let p,qN0. Also, let (A)p and (B)q be the arrays of p commutative matrices A1,A2,,Ap and q commutative matrices B1,B2,,Bq in Cm×m, respectively, such that Bs+I is invertible for 1sq and all N0; then, the generalized hypergeometric matrix function pFq((A)p;(B)q;ξ)(ξC) is defined by (see, e.g., [15,16])

    pFq((A)p;(B)q;ξ)=s=0pj=1(Aj)sqi=1[(Bi)s]1ξss!. (1.14)

    In particular, the Gauss hypergeometric matrix function 2F1(A1,A2;A3;ξ)H(A1,A2;A3;ξ) is defined by

    H(A1,A2;A3;ξ)=s=0(A1)s(A2)s[(A3)s]1ξss!, (1.15)

    for matrices A1,A2 and A3 in Cm×m such that A3+I is invertible for all N0.

    In this section, we introduce the extended (k,τ)-Wright hypergeometric matrix functions 3W(k,τ)2 and some derivative formula as follows:

    Definition 2.1. Assume that D, E, F, G and H are positive stable matrices in Cm×m, such that G+I and H+I are invertible for all N0, ρR+0 and k,τR+. Then, for |ξ|<1, the extended (k,τ)-Wright hypergeometric matrix function is defined in the following form:

    3W(k,τ)2(ξ):=3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ξ]:=Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)ξss!, (2.1)

    where (D;ρ)s,k is the generalized k-Pochhammer matrix symbol defined as

    (D;ρ)s,k={Γρk(D+sI)Γ1k(D),˜μ(D)>0,ρ,kR+,sN,(D)s,k,p=0,kR+,sN,I,s=0,p=0,k=1. (2.2)

    Or, equivalently, by means of the integral formula given by (1.9), as follows:

    (D;ρ)s,k=Γ1k(D)0θD+(s1)Ie(θkkρkkθk)dθ,kR+,ρR+0,˜μ(D+sI)>0.

    Remark 2.1. The following are some of the special cases of the extended (k,τ)-Wright hypergeometric matrix functions 3W(k,τ)2 given by (2.1):

    (i) When k=1, (2.1) reduces to the following set of extended τ-Wright hypergeometric matrix functions (see [29,30]):

    3W(τ)2(ξ):=3W(τ)2[(D;ρ),(E),(F)(G),(H);ξ]:=Γ1(E)Γ(G)Γ1(F)Γ(H)×s=0(D;ρ)sΓ1(G+τsI)Γ(E+τsI)×Γ1(H+τsI)Γ(F+τsI)ξss!, (2.3)

    where D, E, F, G and H are positive stable matrices in Cm×m, such that G+I and H+I are invertible for all N0, ρR+0 and τR+.

    (ii) When τ=1 in (2.1), and by using some properties of k-Pochhammer matrix symbols, we obtain the following extended k-Gauss hypergeometric matrix function (see [18]):

    3W(k)2(ξ):=3W(k)2[(D;k,ρ),(E,k),(F,k)(G,k),(H,k);ξ]=s=0(D;ρ)s,k(E)s,k(F)s,k[(G)s,k]1[(H)s,k]1ξss!, (2.4)

    where D, E, F, G and H are positive stable matrices in Cm×m, such that G+I and H+I are invertible for all N0, ρR+0 and kR+.

    (iii) When F=H, (2.1) reduces to the extended (k,τ)-Wright hypergeometric matrix function 2R(k,τ;ρ)1(ξ) defined by

    2R(k,τ;ρ)1(ξ):=2R(τ)1((D,k;ρ),(E,k);(G,k);ξ):=Γ1k(E)Γk(G)s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)ξss!, (2.5)

    where D,E and G are positive stable matrices in Cm×m, such that E+I and G+I are invertible for all N0, ρR+0 and τR+.

    (iv) If we set ρ=0 and F=H, then (2.1) reduces to the (k,τ)-Gauss hypergeometric matrix function 2R(k,τ)1(ξ) given by (see [32])

    2R(k,τ)1(ξ):=2R(τ)1((D,k),(E,k);(G,k);ξ):=Γ1k(E)Γk(G)s=0(D)s,kΓ1k(G+kτsI)Γk(E+kτsI)ξss!, (2.6)

    where D,E and G are positive stable matrices in Cm×m, such that E+I and G+I are invertible for all N0 and k,τR+.

    (v) When τ=1 in (2.6), and by using some properties of k-Pochhammer matrix symbols, we obtain the following k-hypergeometric matrix function (see [18]):

    Hk(D,E;G;ξ)=s=0(D)s,k(F)s,k[(G)s,k]1ξss!, (2.7)

    where kR+ and D,E and G are positive stable matrices in Cm×m, such that G+I is invertible for all N0.

    (vi) When k=1, (2.6) reduces to the following Wright hypergeometric matrix function (see [23]):

    2R(τ)1(D,E;G;ξ):=Γ1(E)Γ(G)s=0(D)sΓ1(G+τsI)Γ(E+τsI)ξss!, (2.8)

    where τR+ and D,E and G are positive stable matrices in Cm×m, such that G+I is invertible for all N0.

    (vii) If we set k=1, (2.7) will yield the hypergeometric matrix function defined in (1.15).

    Now, we will present some derivative formulas of the extended (k,τ)-Wright hypergeometric matrix function defined by (2.1).

    Theorem 2.1. Under the conditions of the hypothesis in Definition 2.1, the following derivative formulas for 3W(k,τ)2(ξ) hold true:

    dndξn{3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ξ]}=(D)n,kΓk(G)Γk(E+τknI)Γ1k(E)Γ1k(G+τknI)×Γk(H)Γk(F+τknI)Γ1k(F)Γ1k(H+τknI)×3W(k,τ)2[(D+nkI,k;ρ),(E+τnkI,k),(F+τnkI,k)(G+τnkI,k),(H+τnkI,k);ξ], (2.9)

    and

    kndndξn[ξGkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ωξτ]]=ξ(GnkI)kIΓk(G)Γ1(GnkI)3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(GnkI,k),(H,k);ωξτ], (2.10)

    where ωC,ρR+0 and k,τR+.

    Proof. Differentiating n times both sides of (2.1) with respect to ξ, we can easily obtain the derivative formula for the set of extended (k,τ)-Wright hypergeometric matrix functions 3W(k,τ)2(ξ) asserted by (2.9).

    Next, we will prove the derivative formula given by (2.10) according to the uniform convergence of the series given by (2.1), differentiating term by term under the sign of summation before using (2.1) to get the right-hand side of (2.10) after minimal simplifications.

    Theorem 2.2. Assume that ωC and α,ξC{0} with Re(ξ)>Re(α), ρR+0 and k,τR+. Also, let μC{1}, and nN. Further, let D, E, G and H be positive stable matrices in Cm×m, such that G+I and H+I areinvertible for all N0. Then, we have

    (1ξμddξ)n{(ξμ+1αμ+1)HkI2R(k,τ)1((D,k;ρ),(E,k);(G,k);ω(ξμ+1αμ+1)τ)}=kn(μ+1)nΓk(H)Γ1k(HnkI)(ξμ+1αμ+1)Hk(n+1)I×3W(k,τ)2[(D,k;ρ),(E,k),(H,k)(G,k),(HnkI,k);ω(ξμ+1αμ+1)τ]. (2.11)

    Proof. For convenience, we denote the left-hand side of (2.11) by Ł. By invoking (2.5) and interchanging the order of summation and differentiation, we find that

    Ł=Γk(G)Γ1(E)s=0(D,k;ρ)s,kΓk(E+skτI)Γ1k(G+skτI)ωss!×{(1ξμddξ)n(ξμ+1αμ+1)Hk+(τs1)I}=Γk(G)Γ1(E)s=0(D,k;ρ)s,kΓk(E+skτI)Γ1k(G+skτI)ωss!×{(μ+1)nΓ(Hk+τsI)Γ1(Hk+(τsn)I)(ξμ+1αμ+1)Hk+(τsn1)I}.

    Making use of the relation given by (1.7), we arrive to

    Ł=(μ+1)nkn(ξμ+1αμ+1)Hk(n+1)I×Γk(G)Γ1(E)s=0(D,k;ρ)s,kΓk(E+skτI)Γ1k(G+skτI)×Γk(H+τskI)Γ1k(H+k(τsn)I){ω(ξμ+1αμ+1)τ}ss!,

    which, in view of (2.1), leads to the right-hand side of (2.11) in Theorem 2.2.

    Remark 2.2. If we take Remark 2.1 into account, then we can get several special cases of Theorems 2.1 and 2.2.

    The Mellin transform of a suitable integrable function Ψ(u) is defined, as usual, by

    M{Ψ(u):uε}=0uε1Ψ(u)du,εR+, (3.1)

    provided that the improper integral in (3.1) exists.

    The following lemma will be useful in the sequel.

    Lemma 3.1. For a matrix F in Cm×m, ρR+0 and k,εR+, we have

    M{Γρk(F):ρε}=Γk(εI)Γk(F+εI)(˜μ(F+εI)>0whenk=1), (3.2)

    where Γρk(F) is the extended k-gamma of a matrixargument defined in (1.9).

    Proof. From (3.1), the Mellin transform of Γρk(F) in ρ is

    M{Γρk(F):ρε}=0ρε10wFIe(wkkρkkwk)dwdρ.

    An application of the Fubini theorem [33], with few calculations, yields

    M{Γρk(F):ρε}=kεk1.Γ(εk)0wF+(ε1)Iewkkdw.

    Upon using the relation given by (1.7), we can complete the proof of (3.2).

    Remark 3.1. If k=1 in (3.2), we have a matrix version of the result of Chaudhry and Zubair [33,p. 16,Eq. (1.110)] in the following form:

    0ρε1Γρ(F)dρ=Γ(εI)Γ(F+εI),˜μ(F+εI)>0. (3.3)

    Theorem 3.1. Under the conditions of the hypothesis in Definition 2.1, the Mellin transform of the set of extended (k,τ)-Wright hypergeometric matrix functions 3W(k,τ)2(ξ), defined by (2.1), is given as

    M{3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ξ]:ρε}=Γk(ε)(D)ε,k3W(k,τ)2[(D+εI,k;ρ),(E,k),(F,k)(G,k),(H,k);ξ], (3.4)

    where Re(ε)>0 and ˜μ(D+εI)>0 when ρ=0 and k=1.

    Proof. According to Definitions (2.1) and (3.1), we find that

    M{3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ξ]:ρε}=0ρε1{Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)ξss!}dρ=Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0Γ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)ξss!×Γ1k(D)0ρε1Γρk(D+sI)dρ.

    Applying Lemma 3.1, we arrive to

    M{3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ξ]:ρε}=Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0Γ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)ξss!×Γ1k(D)Γk(εI)Γk(D+(s+εI)=Γk(εI)(D)ε,kΓ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D+εI;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)ξss!,

    which, upon expression in terms of (2.1), leads to the desired formula given by (3.4).

    Remark 3.2. If we take the results (2.3)–(2.5) in Remark 2.1 into account, then we can obtain some special cases of Theorem 3.1. Further, the result proved in (3.4), which involves certain matrices in Cm×m, may reduce to the corresponding classical one when m=1 and k=1 (see, e.g., [12,13]).

    In this section, we show certain integral representations for the extended (k,τ)-Wright hypergeometric matrix functions.

    Theorem 4.1. Let ξ,ωC, Re(ω)>0, k,τR+, ρR+0 and |ξvτ|<1. Also, let D, E, F, G, H and GE bepositive stable matrices in Cm×m such that GE=EG. Then

    3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ξ]=1kΓk(G)Γ1k(E)Γ1k(GE)10vEkI(1v)GEkI2R(τ)1((D,k;ρ),(F,k);(H,k);ξvτ)dv. (4.1)

    Proof. Loading the following elementary identity involving the k-beta matrix function

    (E)k,nτ[(G)k,nτ]1=Γ1k(E)Γ1k(G+knτI)Γk(G)Γk(E+knτI)=1kΓ1k(E)Γ1k(GE)Γk(G)10vEk+(nτ1)I(1v)GEkIdv, (4.2)

    in (2.1), and by using the series representation in (2.5), then we obtain the required integral representation given by (4.1).

    Theorem 4.2. Let ξ,αC, Re(α)>0, k,τR+, ρR+0 and |αξ|<1. Let D, E, F, G, H, T and G+T be positivestable matrices in Cm×m such that GE=EG.Then, we have

    Γ1k(T)Γ1k(G)Γk(G+T)ξ0uGkI(ξu)TkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);αu]du=ξG+TkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G+T,k),(H,k);αξ]. (4.3)

    Proof. Suppose that Υ is the left-hand side of (4.3). By invoking (2.1), we have

    Υ=Γ1k(T)Γ1k(G)Γk(G+T)ξ0uGkI(ξu)TkI×Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)(uα)ss!du.

    Substituting u=ξv, we find that

    Υ=ξG+TkIΓ1k(E)Γ1k(T)Γk(G+T)Γ1k(F)Γk(H)×10vGk+(s1)I(1v)TkIdv×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)(ξα)ss!.

    Employing (1.12) and after simple computations, we obtain the right-hand side of (4.3).

    Remark 4.1. From the special cases in Remark 2.1, we can obtain many special cases of (4.1) and (4.3).

    In recent years, various studies on k-fractional calculus operators were archived by many researchers (see, for example, [34,35,36,37]). Here, Iμα+,k is the k-Riemann-Liouville fractional integral operator and Dμα+,k is the k-Riemann-Liouville fractional differential operator of order μC, Re(μ)>0, which are defined as (see [32,36])

    (Iμα+,kΦ)(ξ)=1kΓk(μ)ξαΦ(v)(ξv)1μkdv,μC,Re(μ)>0, (5.1)

    and

    (Dμα+,kΦ)(ξ)=(ddξ)n(knInkμα+,kΦ)(ξ),μC,Re(μ)>0,n=[Re(μ)]+1, (5.2)

    respectively.

    The following lemma will be required in this section.

    Lemma 5.1. [32]Let E be a positive stable matrix in CN×N.Then, the k-Riemann-Liouville fractional integrals of order μ, such that Re(μ)>0 is given as

    Iμα+,k[(ξα)EkI](ξ)=Γk(E)Γ1k(E+μI)(ξα)E+μIkI,ξ>α.

    Theorem 5.1. Assume that D, E, F, G and H are positive stable matricesin Cm×m and k,τR+, ρR+0, αR+0 and μ,ωC such that Re(μ)>0.Then, for ξ>α and |(ξα)τ|<1, we havek-Riemann-Liouville fractional integral and derivative representations of order μ of the extended (k,τ)-Wright hypergeometric matrix functions 3W(k,τ)2(ξ) as follows:

    Iμα+,k[(vα)GkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ω(vα)τ]=(ξα)G+μIkIΓk(G)Γ1(G+μI)3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G+μI,k),(H,k);ω(ξα)τ] (5.3)

    and

    Dμα+,k[(vα)GkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ω(vα)τ]=Γk(G)(ξα)GμIkIΓ1k(GμI)3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(GμI,k),(H,k);ω(ξα)τ]. (5.4)

    Proof. By virtue of the formulas given by (5.1) and (2.1), and via application of Lemma 5.1, we obtain

    Iμα+,k[(vα)GkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ω(vα)τ]](ξ)=1kΓk(μ)ξα(vα)GkI(vα)1μk3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ω(vα)τ]dv=Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)ωss!Iμα+,k[(vα)Gk+τsI]=(ξα)G+μIkIΓk(G)Γ1k(G+μI)3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G+μI,k),(H,k);ω(ξα)τ].

    Next, from (2.1) and (5.2), we have

    Dμα+,k[(vα)GkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ω(vα)τ]]=(ddξ)n{knInkμα+,k[(vα)GkI3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G,k),(H,k);ω(vα)τ]](ξ)}=(ddξ)n{kn(ξα)GμIk+(n1)IΓk(G)Γ1k(G+(nkμ)I)×3W(k,τ)2[(D,k;ρ),(E,k),(F,k)(G+(nkμ)I,k),(H,k);ω(ξα)τ]}.

    Upon using (2.10), we thus arrive to the desired result given by (5.4) in Theorem 5.1.

    Remark 5.1. For ρ=0 and F=H in Theorem 5.1, we get interesting results concerning the k-fractional calculus of the (k,τ)-Wright hypergeometric matrix function (cf. [32]).

    Remark 5.1. For k=1, ρ=0 and F=H in Theorem 5.1, we get interesting results concerning the fractional calculus of the Wright hypergeometric matrix function (see [29,30]).

    Recently, fractional kinetic equations have attracted the attention of many researchers due to their importance in diverse areas of applied science such as astrophysics, dynamical systems, control systems and mathematical physics. The kinetic equations of fractional order have been used to determine certain physical phenomena. Especially, the kinetic equations describe the continuity of the motion of substances. Therefore, a large number of articles in the solution of these equations have been published in the literature (see [38,39,40,41,42,43]).

    The fractional kinetic equation

    N(t)N0=C0DνtN(t),C>0,t>0, (6.1)

    is the fractional version of the classical kinetic equation

    N(t)N0=C0D1tN(t),C>0,t>0, (6.2)

    or equivalently, the destruction-production time dependence equation derived in 2002 by Haubold and Mathai [38,39]:

    dNdt=δ(N)+p(N),

    where N=N(t) is the rate of reaction, δ(Nt) is the rate of destruction, and p=p(N) is the rate of production. In (6.1), 0Dνt is the well-known Riemann-Liouville fractional integral operator, defined as

    0Dνtf(t)=1Γ(ν)t0(ts)ν1f(s)ds,Re(ν)>0.

    0D1t, in (6.2), is the classical integral operator with respect to t, and a special case of 0Dνt.

    Theorem 6.1. Let C be a positive stable and invertible matrix in Cm×m, and let the hypothesis assumed in Definition 2.1 still hold true. Then the solution to the generalized fractional kinetic matrix equation

    N(t)IN03W(k,τ)2(t)=Cν0DνtN(t), (6.3)

    is given as

    N(t)I=N0Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)Γ1k(H+kτsI)Γk(F+kτsI)×tsEν,s+1(Cνtν), (6.4)

    where Eν,s+1(Cνtν) is the generalized Mittag-Leffler matrix function, defined as (cf.[44,45])

    Eν,s+1(Cνtν)=r=0(1)rCνrtνrΓ(νr+s+1). (6.5)

    Proof. First, recall that the Laplace transform of a Riemann-Liouville fractional integral is [46]

    L[0Dνtf(t)](p)=pνˆf(p),

    where ˆf(p) is the Laplace transform of f(t). Applying the Laplace transform to (6.3) gives

    (I+pνCν)ˆN(p)=N0L[3W(k,τ)2(t)](p)=N0Γ1k(E)Γk(G)Γ1k(F)Γk(H)s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)×Γ1k(H+kτsI)Γk(F+kτsI)p(s+1).

    Hence,

    ˆN(p)I=N0Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)Γ1k(H+kτsI)Γk(F+kτsI)×r=0(1)rCνrp(νr+s+1).

    Taking the inverse Laplace transform of the above result, and by using the fact that

    L1[pμ]=tμ1Γ(μ),Re(μ)>0,

    we get

    N(t)I=N0Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)Γ1k(H+kτsI)Γk(F+kτsI)×r=0(1)rCνrtνr+sΓ(νr+s+1),

    which is the targeted result given by (6.4).

    Theorem 6.2. Let C be a positive stable matrix in Cm×m, where αC with Re(α)>0, and let the hypothesis given in Definition 2.1 be satisfied. Then the generalized fractional kinetic matrix equation

    N(t)IN03W(k,τ)2(ανt)=Cν0DνtN(t) (6.6)

    is solvable, and its solution is

    N(t)I=N0Γ1k(E)Γk(G)Γ1k(F)Γk(H)×s=0(D;ρ)s,kΓ1k(G+kτsI)Γk(E+kτsI)Γ1k(H+kτsI)Γk(F+kτsI)×ανstsEν,νs+1(Cνtν),

    where Eν,r(Cνtν) is the generalized Mittag-Leffler matrix function defined in (6.5).

    Upon using Remark 2.1, several special cases can be obtained from Theorems 6.1 and 6.2, such as the following corollaries.

    Corollary 6.1. Let C be a positive stable and invertible matrix in Cm×m and H(D,F;G;t) be thehypergeometric matrix function defined by (1.15); thenthe solution to the generalized fractional kinetic matrix equation

    N(t)IN0H(D,F;G;t)=Cν0DνtN(t), (6.7)

    is given as

    N(t)I=N0s=0(D)s(F)s[(G)s]1tsEν,s+1(Cνtν), (6.8)

    where Eν,s+1(Cνtν) is the generalized Mittag-Leffler matrix function defined by (6.5).

    Corollary 6.2. Let C be a positive stable and invertible matrix in Cm×m, where αC with Re(α)>0, and H(D,F;G;t) be the hypergeometric matrix function defined by (1.15). Then the solution to the generalized fractional kinetic matrix equation

    N(t)IN0H(D,F;G;ανt)=Cν0DνtN(t), (6.9)

    is given as

    N(t)I=N0s=0(D)s(F)s[(G)s]1ανstsEν,s+1(Cνtν), (6.10)

    where Eν,s+1(Cνtν) is the generalized Mittag-Leffler matrix function defined by (6.5).

    Motivated by recent researches [29,30,40,41,42,43] in the current work, we introduce an extension of the k-Wright ((k,τ)-Gauss) hypergeometric matrix function in Definition 2.1. Several properties which have been archived in the article include integral representations, the Mellin transform and the k-Riemann-Liouville fractional integral and derivative of the new extended (k,τ)-Gauss matrix function. Also, many specific cases are considered. As an application, we demonstrated the solvability of fractional kinetic matrix equations involving the new function. We also obtained many special cases for these fractional equations.

    The fourth-named author extends their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups (No. R.G.P.2/11/43).

    This work does not have any conflict of interest.



    [1] P. Agarwal, R. P. Agarwal, M. Ruzhansky, Special functions and analysis of differential equations, New York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9780429320026
    [2] N. Kaiblinger, Product of two hypergeometric functions with power arguments, J. Math. Anal. Appl., 479 (2019), 2236–2255. https://doi.org/10.1016/j.jmaa.2019.07.053 doi: 10.1016/j.jmaa.2019.07.053
    [3] M. Hidan, S. M. Boulaaras, B. Cherif, M. Abdalla, Further results on the (p,k)-analogue of hypergeometric functions associated with fractional calculus operators, Math. Probl. Eng., 2021 (2021), 1–10. https://doi.org/10.1155/2021/5535962 doi: 10.1155/2021/5535962
    [4] T. H. Zhao, M. K. Wang, G. J. Hai, Y. M. Chu, Landen inequalities for Gaussian hypergeometric function, RACSAM, 116 (2022), 1–23. https://doi.org/10.1007/s13398-021-01197-y doi: 10.1007/s13398-021-01197-y
    [5] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math., 5 (2020), 6479–6495. https://doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
    [6] T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 1–15. https://doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y
    [7] N. Virchenko, S. L. Kalla, A. Al-Zamel, Some results on a generalized hypergeometric function, Integr. Trans. Spec. Funct., 12 (2001), 89–100. https://doi.org/10.1080/10652460108819336 doi: 10.1080/10652460108819336
    [8] N. Khan, T. Usman, M. Aman, S. Al-Omari, S. Araci, Computation of certain integral formulas involving generalized Wright function, Adv. Differ. Equ., 2020 (2020), 1–10. https://doi.org/10.1186/s13662-020-02948-8 doi: 10.1186/s13662-020-02948-8
    [9] A. Ghaffar, A. Saif, M. Iqbal, M. Rizwan, Two classes of integrals involving extended Wright type generalized hypergeometric function, Commun. Math. Appl., 10 (2019), 599–606. https://doi.org/10.26713/cma.v10i3.1190 doi: 10.26713/cma.v10i3.1190
    [10] S. B. Rao, J. C. Prajapati, A. D. Patel, A. K. Shukla, Some properties of Wright-type generalized hypergeometric function via fractional calculus, Adv. Differ. Equ., 2014 (2014), 1–11. https://doi.org/10.1186/1687-1847-2014-119 doi: 10.1186/1687-1847-2014-119
    [11] N. U. Khan, T. Usman, M. Aman, Some properties concerning the analysis of generalized Wright function, J. Comput. Appl. Math., 376 (2020), 112840. https://doi.org/10.1016/j.cam.2020.112840 doi: 10.1016/j.cam.2020.112840
    [12] R. K. Parmar, Extended τ-hypergeomtric functions and associated properties, C. R. Math., 353 (2015), 421–426. https://doi.org/10.1016/j.crma.2015.01.016 doi: 10.1016/j.crma.2015.01.016
    [13] R. K. Gupta, B. S. Shaktawat, D. Kumar, Some results associted with extended τ-Gauss hypergeomtric functions, Ganita Sandesh, 28 (2014), 55–60.
    [14] L. Jódar, J. C. Cortés, Some properties of Gamma and Beta matrix functions, Appl. Math. Lett., 11 (1998), 89–93. https://doi.org/10.1016/S0893-9659(97)00139-0 doi: 10.1016/S0893-9659(97)00139-0
    [15] L. Jódar, J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math., 99 (1998), 205–217. https://doi.org/10.1016/S0377-0427(98)00158-7 doi: 10.1016/S0377-0427(98)00158-7
    [16] M. Abdalla, Special matrix functions: Characteristics, achievements and future directions, Linear Multilinear Algebra, 68 (2020), 1–28. https://doi.org/10.1080/03081087.2018.1497585 doi: 10.1080/03081087.2018.1497585
    [17] S. Mubeen, G. Rahman, M. Arshad, k-gamma, k-beta matrix functions and their properties, J. Math. Comput. Sci., 5 (2015), 647–657.
    [18] G. Rahman, A. Ghaffar, S. D. Purohit, S. Mubeen, M. Arshad, On the hypergeomtric matrix k-functions, Bull. Math. Anal. Appl., 8 (2016), 98–111.
    [19] G. S. Khammash, P. Agarwal, J. Choi, Extended k-gamma and k-beta functions of matrix arguments, Mathematics, 8 (2020), 1–13. https://doi.org/10.3390/math8101715 doi: 10.3390/math8101715
    [20] A. Bakhet, F. L. He, M. M. Yu, On the matrix version of extended Bessel functions and its application to matrix differential equations, Linear Multilinear Algebra, 2021. https://doi.org/10.1080/03081087.2021.1923629
    [21] M. Abdalla, S. A. Idris, I. Mekawy, Some results on the extended hypergeometric matrix functions and related functions, J. Math., 2021 (2021), 1–12. https://doi.org/10.1155/2021/2046726 doi: 10.1155/2021/2046726
    [22] M. Abdalla, A. Bakhet, Extended Gauss hypergeometric matrix functions, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 1465–1470. https://doi.org/10.1007/s40995-017-0183-3 doi: 10.1007/s40995-017-0183-3
    [23] F. L. He, A. Bakhet, M. Abdalla, M. Hidan, On the extended hypergeometric matrix functions and their applications for the derivatives of the extended Jacobi matrix polynomial, Math. Probl. Eng., 2020 (2020), 1–8. https://doi.org/10.1155/2020/4268361 doi: 10.1155/2020/4268361
    [24] M. Akel, A. Bakhet, M. Abdalla, F. L. He, On degenerate gamma matrix functions and related functions, Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2022.2040942
    [25] M. Abdalla, H. Abd-Elmageed, M. Abul-Ez, M. Zayed, Further investigations on the two variables second Appell hypergeometric matrix function, Quaest. Math., 2022. https://doi.org/10.2989/16073606.2022.2034680
    [26] R. Dwivedi, V. Sahai, Lie algebras of matrix difference differential operators and special matrix functions, Adv. Appl. Math., 122 (2021), 102109. https://doi.org/10.1016/j.aam.2020.102109 doi: 10.1016/j.aam.2020.102109
    [27] M. Hidan, A. Bakhet, H. Abd-Elmageed, M. Abdalla, Matrix-valued hypergeometric Appell-type polynomials, Electron. Res. Arch., 30 (2022), 2964–2980. https://doi.org/10.3934/era.2022150 doi: 10.3934/era.2022150
    [28] A. Verma, J. Younis, H. Aydi, On the Kampé de Fériet hypergeometric matrix function, Math. Probl. Eng., 2021 (2021), 1–11. https://doi.org/10.1155/2021/9926176 doi: 10.1155/2021/9926176
    [29] A. Bakhet, Y. Jiao, F. L. He, On the Wright hypergeometric matrix functions and their fractional calculus, Integr. Trans. Spec. Funct., 30 (2019), 138–156. https://doi.org/10.1080/10652469.2018.1543669 doi: 10.1080/10652469.2018.1543669
    [30] M. Abdalla, Fractional operators for the Wright hypergeometric matrix functions, Adv. Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.1186/s13662-020-02704-y doi: 10.1186/s13662-020-02704-y
    [31] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192.
    [32] H. Abd-Elmageed, M. Hosny, S. Boulaaras, Results on the (k,τ)-analogue of hypergeometric matrix functions and k-fractional calculus, Fractals, 2022, In press.
    [33] M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, New York: Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420036046
    [34] S. Naz, M. N. Naeem, On the generalization of k-fractional Hilfer-Katugampola derivative with Cauchy problem, Turk. J. Math., 45 (2021), 110–124.
    [35] M. Abdalla, M. Hidan, S. M. Boulaaras, B. Cherif, Investigation of extended k-hypergeometric functions and associated fractional integrals, Math. Probl. Eng., 2021 (2021), 1–11. https://doi.org/10.1155/2021/9924265 doi: 10.1155/2021/9924265
    [36] D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar, Certain k-fractional calculus operators and image formulas of k-Struve function, AIMS Math., 5 (2020), 1706–1719. https://doi.org/10.3934/math.2020115 doi: 10.3934/math.2020115
    [37] R. Yilmazer, K. Ali, Discrete fractional solutions to the k-hypergeometric differential equation, Math. Methods Appl. Sci., 44 (2020), 7614–7621. https://doi.org/10.1002/mma.6460 doi: 10.1002/mma.6460
    [38] R. K. Saxena, A. M. Mathai, H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci., 282 (2002), 281–287. https://doi.org/10.1023/A:1021175108964 doi: 10.1023/A:1021175108964
    [39] R. K. Saxena, A. M. Mathai, H. J. Haubold, On generalized fractional kinetic equations, Phys. A, 344 (2004), 657–664. https://doi.org/10.1016/j.physa.2004.06.048 doi: 10.1016/j.physa.2004.06.048
    [40] M. Samraiz, M. Umer, A. Kashuri, T. Abdeljawad, S. Iqbal, N. Mlaiki, On weighted (k,s)-Riemann-Liouville fractional operators and solution of fractional kinetic equation, Fractal Fract., 5 (2021), 1–18. https://doi.org/10.3390/fractalfract5030118 doi: 10.3390/fractalfract5030118
    [41] M. Abdalla, M. Akel, Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6060305 doi: 10.3390/fractalfract6060305
    [42] P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand, G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alex. Eng. J., 57 (2018), 1937–1942. https://doi.org/10.1016/j.aej.2017.03.046 doi: 10.1016/j.aej.2017.03.046
    [43] K. S. Nisar, A. Shaikh, G. Rahman, D. Kumar, Solution of fractional kinetic equations involving class of functions and Sumudu transform, Adv. Differ. Equ., 2020 (2020), 1–11. https://doi.org/10.1186/s13662-020-2513-6 doi: 10.1186/s13662-020-2513-6
    [44] R. Garrappa, M. Popolizio, Computing the matrix Mittag-Leffler function with applications to fractional calculus, J. Sci. Comput., 77 (2018), 129–153. https://doi.org/10.1007/s10915-018-0699-5 doi: 10.1007/s10915-018-0699-5
    [45] A. Sadeghi, J. R. Cardoso, Some notes on properties of the matrix Mittag-Leffler function, Appl. Math. Comput., 338 (2018), 733–738. https://doi.org/10.1016/j.amc.2018.06.037 doi: 10.1016/j.amc.2018.06.037
    [46] M. Hidan, M. Akel, S. M. Boulaaras, M. Abdalla, On behavior Laplace integral operators with generalized Bessel matrix polynomials and related functions, J. Funct. Spaces, 2021 (2021), 1–10. https://doi.org/10.1155/2021/9967855 doi: 10.1155/2021/9967855
  • This article has been cited by:

    1. Mohamed Akel, Muajebah Hidan, Salah Boulaaras, Mohamed Abdalla, On the solutions of certain fractional kinetic matrix equations involving Hadamard fractional integrals, 2022, 7, 2473-6988, 15520, 10.3934/math.2022850
    2. Mohamed Abdalla, Mohamed Akel, Contribution of Using Hadamard Fractional Integral Operator via Mellin Integral Transform for Solving Certain Fractional Kinetic Matrix Equations, 2022, 6, 2504-3110, 305, 10.3390/fractalfract6060305
    3. Ahmed Bakhet, Abd-Allah Hyder, Areej A. Almoneef, Mohamed Niyaz, Ahmed H. Soliman, On New Matrix Version Extension of the Incomplete Wright Hypergeometric Functions and Their Fractional Calculus, 2022, 10, 2227-7390, 4371, 10.3390/math10224371
    4. Hala Abd-Elmageed, Muajebah Hidan, Mohamed Abdalla, Investigation for the k-analogue of τ-Gauss hypergeometric matrix functions and associated fractional calculus, 2022, 0308-1087, 1, 10.1080/03081087.2022.2161459
    5. Yahya Almalki, Mohamed Abdalla, Analytic solutions to the fractional kinetic equation involving the generalized Mittag-Leffler function using the degenerate Laplace type integral approach, 2023, 232, 1951-6355, 2587, 10.1140/epjs/s11734-023-00925-2
    6. Mohammed Z. Alqarni, Ahmed Bakhet, Mohamed Abdalla, Application of the Pathway-Type Transform to a New Form of a Fractional Kinetic Equation Involving the Generalized Incomplete Wright Hypergeometric Functions, 2023, 7, 2504-3110, 348, 10.3390/fractalfract7050348
    7. Ahmed Bakhet, Shahid Hussain, Mohra Zayed, On Fractional Operators Involving the Incomplete Mittag-Leffler Matrix Function and Its Applications, 2024, 16, 2073-8994, 963, 10.3390/sym16080963
    8. Muneera Abdullah Qadha, Sarah Abdullah Qadha, Ahmed Bakhet, On the matrix versions of the k analog of ℑ‐incomplete Gauss hypergeometric functions and associated fractional calculus, 2024, 0170-4214, 10.1002/mma.10382
    9. Yahya Almalki, Mohamed Abdalla, Hala Abd-Elmageed, Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations, 2023, 56, 2391-4661, 10.1515/dema-2023-0112
    10. Mohammed Z. Alqarni, Mohamed Abdalla, Novel Kinds of Fractional λ–Kinetic Equations Involving the Generalized Degenerate Hypergeometric Functions and Their Solutions Using the Pathway-Type Integral, 2023, 11, 2227-7390, 4217, 10.3390/math11194217
    11. Halil GEZER, Cem KAANOGLU, On the extended Wright hypergeometric matrix function and its properties, 2023, 72, 1303-5991, 606, 10.31801/cfsuasmas.1147745
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2131) PDF downloads(97) Cited by(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog