This research paper focused on the solution of systems of fractional integro-differential equations (FIDEs) of the Volterra type with variable coefficients. The proposed approach combined the tau method and shifted Gegenbauer polynomials in a matrix form. The investigation of the existence and uniqueness of solutions for these systems was carried out using Krasnoselskii's fixed point theorem. The equations employed Caputo-style derivative operators, and to minimize computational operations involving derivatives and multiplications, integral and product operational matrices were derived. By introducing suitable polynomial approximations and employing the tau spectral method, the original system of FIDE was transformed into an algebraic system. Solving this algebraic system provided approximate solutions to the main system. Error bounds were computed in the Gegenbauer-weighted Sobolev space. The proposed algorithm was implemented and tested on two systems of integro-fractional differential equations to demonstrate its efficiency and simplicity. By varying the parameter $ \sigma $ in the Gegenbauer polynomials, the impact of this variation on the approximate solutions can be observed. A comparison with another method utilizing the block-by-block approach was also presented.
Citation: Khadijeh Sadri, David Amilo, Kamyar Hosseini, Evren Hinçal, Aly R. Seadawy. A tau-Gegenbauer spectral approach for systems of fractional integro-differential equations with the error analysis[J]. AIMS Mathematics, 2024, 9(2): 3850-3880. doi: 10.3934/math.2024190
This research paper focused on the solution of systems of fractional integro-differential equations (FIDEs) of the Volterra type with variable coefficients. The proposed approach combined the tau method and shifted Gegenbauer polynomials in a matrix form. The investigation of the existence and uniqueness of solutions for these systems was carried out using Krasnoselskii's fixed point theorem. The equations employed Caputo-style derivative operators, and to minimize computational operations involving derivatives and multiplications, integral and product operational matrices were derived. By introducing suitable polynomial approximations and employing the tau spectral method, the original system of FIDE was transformed into an algebraic system. Solving this algebraic system provided approximate solutions to the main system. Error bounds were computed in the Gegenbauer-weighted Sobolev space. The proposed algorithm was implemented and tested on two systems of integro-fractional differential equations to demonstrate its efficiency and simplicity. By varying the parameter $ \sigma $ in the Gegenbauer polynomials, the impact of this variation on the approximate solutions can be observed. A comparison with another method utilizing the block-by-block approach was also presented.
[1] | M. M. Khader, N. H. Sweilam, On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral method, Appl. Math. Model., 37 (2013), 9819–9828. https://doi.org/10.1016/j.apm.2013.06.010 doi: 10.1016/j.apm.2013.06.010 |
[2] | H. Aminikhah, A new analytical method for solving systems of linear integro-differential equations, J. King Saud Univ. Sci., 23 (2011), 349–353. https://doi.org/10.1016/j.jksus.2010.07.016 doi: 10.1016/j.jksus.2010.07.016 |
[3] | R. C. G. Sekar, K. Murugesan, A new analytical method for solving systems of linear integro-differential equations, Appl. Math. Comput., 273 (2016), 484–492. https://doi.org/10.1016/j.amc.2015.09.092 doi: 10.1016/j.amc.2015.09.092 |
[4] | F. Saedpanah, Well-posedness of an integro-differential equation with positive type kernels modeling fractional order viscoelasticity, Eur. J. Mech. A-Solid., 44 (2014), 201–211. https://doi.org/10.1016/j.euromechsol.2013.10.014 doi: 10.1016/j.euromechsol.2013.10.014 |
[5] | S. Larson, M. Racheva, F. Saedpanah, Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity, Comput. Method. Appl. M., 283 (2015), 196–209. https://doi.org/10.1016/j.cma.2014.09.018 doi: 10.1016/j.cma.2014.09.018 |
[6] | J. Wang, T. Z. Xu, Y. Q. Wei, J. Q. Xie, Numerical simulation for coupled systems of nonlinear fractional order integro-differential equations via wavelets method, Appl. Math. Comput., 324 (2018), 36–50. https://doi.org/10.1016/j.amc.2017.12.010 doi: 10.1016/j.amc.2017.12.010 |
[7] | S. A. Deif, S. R. Grace, Iterative refinement for a system of linear integro-differential equations of fractional type, J. Comput. Appl. Math., 294 (2016), 138–150. https://doi.org/10.1016/j.cam.2015.08.008 doi: 10.1016/j.cam.2015.08.008 |
[8] | F. Saemi, H. Ebrahimi, M. Shafiee, An effective scheme for solving system of fractional Volterra-Fredholm integro-differential equations based on the Muntz-Legendre wavelets, J. Comput. Appl. Math., 374 (2020), 112773. https://doi.org/10.1016/j.cam.2020.112773 doi: 10.1016/j.cam.2020.112773 |
[9] | M. H. Heydari, M. R. Hooshmandasl, F. Mohammadi, C. Cattani, Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Commun. Nonlinear Sci., 19 (2014), 37–48. https://doi.org/10.1016/j.cnsns.2013.04.026 doi: 10.1016/j.cnsns.2013.04.026 |
[10] | O. H. Mohammed, A. M. Malik, A modified computational algorithm for solving systems of linear integro-differential equations of fractional order, J. King Saud Univ. Sci., 31 (2019), 946–955. https://doi.org/10.1016/j.jksus.2018.09.005 doi: 10.1016/j.jksus.2018.09.005 |
[11] | J. R. Loh, C. Phang, A new numerical scheme for solving system of Volterra integro-differential equation, Alex. Eng. J., 57 (2018), 1117–1124. https://doi.org/10.1016/j.aej.2017.01.021 doi: 10.1016/j.aej.2017.01.021 |
[12] | F. Youbi, S. Momani, S. Hasan, M. Al-Smadi, Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space, Alex. Eng. J., 61 (2022), 1778–1786. https://doi.org/10.1016/j.aej.2021.06.086 doi: 10.1016/j.aej.2021.06.086 |
[13] | M. Akbar, R. Nawaz, S. Ahsan, K. S. Nisar, A. H. Abdel-Aty, H. Eleuch, New approach to approximate the solution for the system of fractional order Volterra integro-differential equations, Results Phys., 19 (2020), 103453. https://doi.org/10.1016/j.rinp.2020.103453 doi: 10.1016/j.rinp.2020.103453 |
[14] | D. Wang, Y. Liu, H. Li, Z. Fang, Second-order time stepping scheme combined with a mixed element method for a 2D nonlinear fourth-order fractional integro-differential equations, Fractal Fract., 6 (2022), 201. https://doi.org/10.3390/fractalfract6040201 doi: 10.3390/fractalfract6040201 |
[15] | H. R. Marzban, A generalization of Muntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems, Chaos Soliton. Fract., 158 (2022), 112093. https://doi.org/10.1016/j.chaos.2022.112093 doi: 10.1016/j.chaos.2022.112093 |
[16] | M. Pourbabaee, A. Saadatmandi, A new operational matrix based on Müntz-Legendre polynomials for solving distributed order fractional differential equations, Math. Comput. Simulat., 194 (2022), 210–235. https://doi.org/10.1016/j.matcom.2021.11.023 doi: 10.1016/j.matcom.2021.11.023 |
[17] | A. A. El-Sayed, P. Agarwal, Spectral treatment for the fractional-order wave equation using shifted Chebyshev orthogonal polynomials, J. Comput. Appl. Math., 424 (2023), 114933. https://doi.org/10.1016/j.cam.2022.114933 doi: 10.1016/j.cam.2022.114933 |
[18] | I. Terghini, A. Hasseine, D. Caccavo, H. J. Bart, Solution of the population balance equation for wet granulation using second kind Chebyshev polynomials, Chem. Eng. Res. Des., 189 (2023), 262–271. https://doi.org/10.1016/j.cherd.2022.11.028 doi: 10.1016/j.cherd.2022.11.028 |
[19] | D. S. Mohamed, R. A. Taher, Comparison of Chebyshev and Legendre polynomials methods for solving two dimensional Volterra-Fredholm integral equations, Journal of the Egyptian Mathematical Society, 25 (2017), 302–307. https://doi.org/10.1016/j.joems.2017.03.002 doi: 10.1016/j.joems.2017.03.002 |
[20] | N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos Soliton. Fract., 73 (2015), 141–147. https://doi.org/10.1016/j.chaos.2015.01.010 doi: 10.1016/j.chaos.2015.01.010 |
[21] | W. Zheng, Y. Chen, J. Zhou, A Legendre spectral method for multidimensional partial Volterra integro-differential equations, J. Comput. Appl. Math., 436 (2024), 115302. https://doi.org/10.1016/j.cam.2023.115302 doi: 10.1016/j.cam.2023.115302 |
[22] | M. Usman, M. Hamid, T. Zubair, R. U. Haq, W. Wang, M. B. Liu, Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials, Appl. Math. Comput., 372 (2020), 124985. https://doi.org/10.1016/j.amc.2019.124985 doi: 10.1016/j.amc.2019.124985 |
[23] | K. M. Hosny, M. M. Darwish, Novel quaternion discrete shifted Gegenbauer moments of fractional-orders for color image analysis, Appl. Math. Comput., 421 (2022), 126926. https://doi.org/10.1016/j.amc.2022.126926 doi: 10.1016/j.amc.2022.126926 |
[24] | J. H. S. Alkhalissi, I. Emiroglu, M. Bayram, A. Secer, F. Tasci, A new operational matrix of fractional derivative based on the generalized Gegenbauer-Humbert polynomials to solve fractional differential equations, Alex. Eng. J., 60 (2021), 3509–3519. https://doi.org/10.1016/j.aej.2021.02.012 doi: 10.1016/j.aej.2021.02.012 |
[25] | M. Faheem, A. Khan, A wavelet collocation method based on Gegenbauer scaling function for solving fourth-order time-fractional integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 184 (2023), 197–218. https://doi.org/10.1016/j.apnum.2022.10.003 doi: 10.1016/j.apnum.2022.10.003 |
[26] | G. Ozaltun, A. Konuralp, S. Gumgum, Gegenbauer wavelet solutions of fractional integro-differential equations, J. Comput. Appl. Math., 420 (2023), 114830. https://doi.org/10.1016/j.cam.2022.114830 doi: 10.1016/j.cam.2022.114830 |
[27] | T. D. Phung, D. T. Duc, V. K. Tuan, Multi-term fractional oscillation integro-differential equations, Fract. Calc. Appl. Anal., 25 (2022), 1713–1733. https://doi.org/10.1007/s13540-022-00074-8 doi: 10.1007/s13540-022-00074-8 |
[28] | P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615 |
[29] | Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. https://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563 |
[30] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1998. |
[31] | Q. Lei, A. Chen, Arzela-Ascoli theorem for demi-linear mappings, J. Funct. Space., 2014 (2014), 679825. https://doi.org/10.1155/2014/679825 doi: 10.1155/2014/679825 |
[32] | Y. Liu, Z. Li, Krasnoselskii type fixed point theorem and applications, P. Am. Math. Soc., 136 (2008), 1213–1220. https://doi.org/10.1090/S0002-9939-07-09190-3 doi: 10.1090/S0002-9939-07-09190-3 |
[33] | K. Sadri, K. Hosseini, D. Baleanu, S. Salahshour, C. Park, Designing a matrix collocation method for fractional delay integro-differential equations with weakly singular kernels based on Vieta-Fibonacci polynomials, Fractal Fract., 6 (2022), 2. https://doi.org/10.3390/fractalfract6010002 doi: 10.3390/fractalfract6010002 |
[34] | E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model., 36 (2012), 4931–4943. https://doi.org/10.1016/j.apm.2011.12.031 doi: 10.1016/j.apm.2011.12.031 |
[35] | B. Y. Guo, L. L. Wang, S. S. Ezz-Eldien, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), 1–41. https://doi.org/10.1016/j.jat.2004.03.008 doi: 10.1016/j.jat.2004.03.008 |
[36] | E. Kreyszig, Introductory functional analysis with applications, Canada: John Wiley & Sons. Inc., 1978. |
[37] | S. S. Ahmed, S. A. Hamasalih, Solving a system of Caputo fractional-order Volterra integro-differential equations with variable coefficients based on the finite difference approximation via the block-by-block method, Symmetry, 15 (2023), 607. https://doi.org/10.3390/sym15030607 doi: 10.3390/sym15030607 |