Research article

A high accuracy compact difference scheme and numerical simulation for a type of diffusive plant-water model in an arid flat environment

  • Received: 19 November 2023 Revised: 27 December 2023 Accepted: 08 January 2024 Published: 11 January 2024
  • MSC : 35A35, 35B20, 35C20

  • In this paper, we investigate the numerical computation method for a one-dimensional self diffusion plant water model with homogeneous Neumann boundary conditions. First, a high accuracy compact difference scheme for the diffusive plant water model in an arid flat environment is constructed using the finite difference method. The fourth order compact difference scheme is used for the spatial derivative term, and the Taylor series expansion and residual correction function are used to discretize the time term. We obtain a difference scheme with second-order accuracy in time and fourth-order accuracy in space. Second, the Fourier analysis method is used to prove that the above format is unconditionally stable. Then, the numerical examples provided the convergence and accuracy of the difference scheme. Finally, numerical simulations are conducted near the Turing Hopf bifurcation point of the model to obtain the spatial distribution maps of vegetation and water under small disturbances of different parameters. In this paper, the evolution law of vegetation quantity and water density at any time is observed.Revealing the impact of small changes in parameters on the spatiotemporal dynamics of plant water models will provide a basis for understanding whether ecosystems are fragile.

    Citation: Jianping Lv, Chunguang Li, Jianqiang Dong. A high accuracy compact difference scheme and numerical simulation for a type of diffusive plant-water model in an arid flat environment[J]. AIMS Mathematics, 2024, 9(2): 3836-3849. doi: 10.3934/math.2024189

    Related Papers:

  • In this paper, we investigate the numerical computation method for a one-dimensional self diffusion plant water model with homogeneous Neumann boundary conditions. First, a high accuracy compact difference scheme for the diffusive plant water model in an arid flat environment is constructed using the finite difference method. The fourth order compact difference scheme is used for the spatial derivative term, and the Taylor series expansion and residual correction function are used to discretize the time term. We obtain a difference scheme with second-order accuracy in time and fourth-order accuracy in space. Second, the Fourier analysis method is used to prove that the above format is unconditionally stable. Then, the numerical examples provided the convergence and accuracy of the difference scheme. Finally, numerical simulations are conducted near the Turing Hopf bifurcation point of the model to obtain the spatial distribution maps of vegetation and water under small disturbances of different parameters. In this paper, the evolution law of vegetation quantity and water density at any time is observed.Revealing the impact of small changes in parameters on the spatiotemporal dynamics of plant water models will provide a basis for understanding whether ecosystems are fragile.



    加载中


    [1] C. G. Jones, J. H. Lawton, M. Shachak, Organisms as ecosystem engineers, Oikos, 69 (1994), 373–386. https://doi.org/10.2307/3545850 doi: 10.2307/3545850
    [2] S. Rietkerk, M. C. Boerlijst, F. van Langevelde, R. Hillerislambers, J. van de Koppel, L. Kumar, et al., Self-organization of vegetation in arid ecosystems, Am. Nat., 160 (2002), 524–530. https://doi.org/10.1086/342078 doi: 10.1086/342078
    [3] V. Deblauwe, N. Barbier, P. Couteron, The global biogeography of semi-arid periodic vegetation patterns, Global Ecol. Biogeogr., 17 (2008), 715–723. https://doi.org/10.1111/j.1466-8238.2008.00413.x doi: 10.1111/j.1466-8238.2008.00413.x
    [4] F. Borgogno, P. D'Odorico, F. Laio, Mathematical models of vegetation pattern formation in ecohydrology, Rev. Geophys, 47 (2009), RG1005. https://doi.org/10.1029/2007RG000256 doi: 10.1029/2007RG000256
    [5] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826–1828. https://doi.org/10.1126/science.284.5421.1826 doi: 10.1126/science.284.5421.1826
    [6] S. V. D. Stelt, A. Doelman, G. Hek, J. D. M. Rademacher, Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23 (2013), 39–95. https://doi.org/10.1007/s00332-012-9139-0 doi: 10.1007/s00332-012-9139-0
    [7] J. Liang, C. Liu, G. Q. Sun, L. Li, L. Zhang, M. Hou, et al., Nonlocal interactions between vegetation induce spatial patterning, Appl. Math. Comput., 428 (2022), 127061. https://doi.org/10.1016/j.amc.2022.127061 doi: 10.1016/j.amc.2022.127061
    [8] Q. Xue, G. Q. Sun, C. Liu, Z. G. Guo, Z. Jin, Y. P. Wu, et al., Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment, Nonlinear Dyn., 99 (2020), 3407–3420. https://doi.org/10.1007/s11071-020-05486-w doi: 10.1007/s11071-020-05486-w
    [9] J. Li, G. Q. Sun, Z. G. Guo, Bifurcation analysis of an extended Klausmeier-Gray-Scott model with infiltration delay, Stud. Appl. Math., 148 (2022), 1519–1542. https://doi.org/10.1111/sapm.12482 doi: 10.1111/sapm.12482
    [10] J. W. Li, X. L. Feng, Y. N. He, RBF-based meshless local Petrov Galerkin method for the multi-dimensional convection-diffusion-reaction equation, Eng. Anal. Bound. Elem., 98 (2019), 46–53. https://doi.org/10.1016/j.enganabound.2018.10.003 doi: 10.1016/j.enganabound.2018.10.003
    [11] J. N. Reddy, Introduction to the finite element method, McGraw-Hill Education, 2019.
    [12] G. R. Barrenechea, A. H. Poza, H. Yorston, A stabilised finite element method for the convection-diffusion-reaction equation in mixed form, Comput. Method. Appl. M., 339 (2018), 389–415. https://doi.org/10.1016/j.cma.2018.04.019 doi: 10.1016/j.cma.2018.04.019
    [13] S. Zhao, J. Ovadia, X. Liu, Y. T. Zhang, Q. Nie, Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems, J. Comput. Phys., 230 (2011), 5996–6009. https://doi.org/10.1016/j.jcp.2011.04.009 doi: 10.1016/j.jcp.2011.04.009
    [14] J. Biazar, M. B. Mehrlatifan, A compact finite difference scheme for reaction-convection-diffusion equation, Chiang Mai J. Sci., 45 (2018), 1559–1568.
    [15] H. S. Shekarabi, J. Rashidinia, Three level implicit tension spline scheme for solution of convection-reaction-diffusion equation, Ain Shams Eng. J., 9 (2018), 1601–1610. https://doi.org/10.1016/j.asej.2016.10.005 doi: 10.1016/j.asej.2016.10.005
    [16] X. Zhu, H. Rui, High-order compact difference scheme of 1D nonlinear degenerate convection-reaction-diffusion equation with adaptive algorithm, Numer. Heat. Tr. B-Fund., 75 (2019), 43–66. https://doi.org/10.1080/10407790.2019.1591858 doi: 10.1080/10407790.2019.1591858
    [17] Z. Z. Sun, Z. B. Zhang, A linearized compact difference scheme for a class of nonlinear delay partial differential equations, Appl. Math. Model., 37 (2013), 742–752. https://doi.org/10.1016/j.apm.2012.02.036 doi: 10.1016/j.apm.2012.02.036
    [18] F. Y. Wu, X. J. Cheng, D. F. Li, J. Q. Duan, A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction-diffusion equations, Comput. Math. Appl., 75 (2018), 2835–2850. https://doi.org/10.1016/j.camwa.2018.01.013 doi: 10.1016/j.camwa.2018.01.013
    [19] X. J. Cheng, J. Q. Duan, D. F. Li, A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations, Appl. Math. Comput., 346 (2019), 452–464. https://doi.org/10.1016/j.amc.2018.10.065 doi: 10.1016/j.amc.2018.10.065
    [20] Z. F. Tian, S. Q. Dai, High-order compact exponential finite difference methods for convection-diffusion type problems, J. Comput. Phy., 220 (2007), 952–974. https://doi.org/10.1016/j.jcp.2006.06.001 doi: 10.1016/j.jcp.2006.06.001
    [21] T. Wang, T. Liu, A consistent fourth-order compact finite difference scheme for solving vorticity-stream function form of incompressible Navier-Stokes equations, Numer. Math. Theory Me., 12 (2019), 312–330. https://doi.org/10.4208/nmtma.OA-2018-0043 doi: 10.4208/nmtma.OA-2018-0043
    [22] F. Smith, S. Tsynkov, E. Turket, Compact high order accurate schemes for the three dimensional wave equation, J. Sci. Comput., 81 (2019), 1181–1209. https://doi.org/10.1007/s10915-019-00970-x doi: 10.1007/s10915-019-00970-x
    [23] G. Q. Sun, H. T. Zhang, Y. L. Song, L. Li, Z. Jin, Dynamic analysis of a plant-water model with spatial diffusion, J. Differ. Equations, 329 (2022), 395–430. https://doi.org/10.1016/j.jde.2022.05.009 doi: 10.1016/j.jde.2022.05.009
    [24] J. Y. Wei, High-order compact difference method for the convection diffusion reaction equations and its applications in epidemic models (Chinese), Ningxia University, 2022. https://doi.org/10.27257/d.cnki.gnxhc.2022.000053
    [25] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. https://doi.org/10.1016/0021-9991(92)90324-R doi: 10.1016/0021-9991(92)90324-R
    [26] Y. Wang, The Extrapolation Method of Five-Point Numerical Formulas for One-Orde Derivative, Math. Pract. Theory, 41 (2011), 163–167.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(861) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog