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Abstract: In this paper, we investigate the numerical computation method for a one-dimensional self
diffusion plant water model with homogeneous Neumann boundary conditions. First, a high accuracy
compact difference scheme for the diffusive plant water model in an arid flat environment is constructed
using the finite difference method. The fourth order compact difference scheme is used for the spatial
derivative term, and the Taylor series expansion and residual correction function are used to discretize
the time term. We obtain a difference scheme with second-order accuracy in time and fourth-order
accuracy in space. Second, the Fourier analysis method is used to prove that the above format is
unconditionally stable. Then, the numerical examples provided the convergence and accuracy of the
difference scheme. Finally, numerical simulations are conducted near the Turing Hopf bifurcation point
of the model to obtain the spatial distribution maps of vegetation and water under small disturbances
of different parameters. In this paper, the evolution law of vegetation quantity and water density at any
time is observed.Revealing the impact of small changes in parameters on the spatiotemporal dynamics
of plant water models will provide a basis for understanding whether ecosystems are fragile.
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expansion; numerical simulation
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1. Introduction

Ecological and environmental desertification began to emerge as a prominent issue in the
late 1960s and early 1970s. Due to a lack of rainfall, the Sahara region in western Africa experienced
severe drought, causing serious harm to local ecosystems, people’s livelihoods, and the global
ecology [1]. At present, desertification is a comprehensive issue related to economy, society, and
ecology. The areas where desertification occurs are in arid and semi-arid regions, and the result is
desertification.Therefore, preventing desertification has become a hot and core issue in global
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research, and plant and water play a crucial role in preventing desertification. In arid and semi-arid
regions, the rainfall is relatively low, and the feedback between vegetation and water acts as a
feedback effect between vegetation and water, resulting in a regular distribution of vegetation in time
and space. This distribution is called vegetation pattern [2–4]. Many domestic scholars have
conducted extensive research on the spatiotemporal dynamics of vegetation in arid and semi-arid
regions based on diffusion type nonlinear partial differential equations [5–9]. However, obtaining
precise and accurate solutions for nonlinear equations is generally challenging. In contrast, numerical
solutions are relatively easier to obtain and can also reveal the spatiotemporal dynamics of the system.

How to effectively solve nonlinear partial differential equations has been a long-standing concern
for researchers, and various numerical methods for solving this equation include finite volume method,
finite element method, lattice Boltzmann method, spectral method, finite difference method, etc. [10–
19]. The finite difference method is widely used due to its simplicity, strong operability, easy access
to high order numerical formats, and ease of programming. The high order finite difference method,
after years of development, has achieved rich research success [20–22]. Furthermore, research has
shown that high-precision methods are superior in improving the reliability and effectiveness of model
numerical simulations.

This article focuses on the plant-water model in a flat environment of one-dimensional space [23],
as follows: 

∂N
∂T
= RJWN2 − MN + D1Nxx, x ∈ (0, lπ), t > 0,

∂W
∂T
= A − LW − RWN2 + D2Wxx, x ∈ (0, lπ), t > 0,

∂N
∂x =

∂W
∂x = 0, x = 0, lπ, t ≥ 0,

N(x, 0) = ϕ(x) ≥ 0,W(x, 0) = ψ(x) ≥ 0, x ∈ [0, lπ].

(1)

Where W represents the density of water, and N represents the density of plant biomass. A is rainfall
rate, M is plant mortality, L is the rate of evaproation of water. J is plant conversion rate, and R denotes
water penetration rate. T represents the time and Nxx,Wxx represent second-order partial derivatives
in one-dimensional space. In this literature, the author applied the branch theory of reaction diffusion
equations to study the spatiotemporal dynamics of model (2.1), and it is necessary to demonstrate the
spatiotemporal distribution of vegetation and water from a numerical simulation perspective.

This paper is organized as follows: In section 2, a high-precision compact difference scheme is
constructed using the finite difference method for a model (2.1) that satisfies homogeneous Neumann
boundary conditions. In section 3, we proved the stability of the high-precision compact difference
scheme in model (2.1). In section 4, numerical examples are constructed to verify the convergence
and accuracy of the high-precision compact difference scheme. By utilizing Matlab for numerical
simulation, we obtain spatial distribution maps of vegetation and water under small disturbances with
varying parameters. By analyzing their variation patterns, the impact of small changes in parameters
on the spatiotemporal dynamics of the vegetation water model is revealed. In section 5, a summary of
the results of this study and prospects for future research are presented.

2. High order difference scheme for a class of plant water models

In this paper. Consider the plant-water model (1.1) in one-dimensional space on flat environment.
The following dimensionless transfromation is perfromed for system (1.1):
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• ω =
√

RJ
√

L
W, n =

√
R
√

L
N, a =

√
RJ

L
√

L
A, t = LT,

• x =
√

L
√

D1
X, m = M

L , µ = D2
D1
,

We obtain the initial conditions on an interval (0, lπ) and the following system with Neumann boundary:
∂n
∂t = ωn2 − mn + nxx, x ∈ (0, lπ), t > 0,
∂ω
∂t = a − ω − ωn2 + µωxx, x ∈ (0, lπ), t > 0,
∂n
∂x =

∂ω
∂x = 0, x = 0, lπ, t ≥ 0,

n(x, 0) = ϕ(x) ≥ 0, ω(x, 0) = ψ(x) ≥ 0, x ∈ [0, lπ].

(2.1)

For the sake of convenience and to ensure consistency with the symbol representations used in this
paper, Eq (2.1) can be reformulated into the form presented in Eq (2.2).

∂u(x,t)
∂t = d1

∂2u(x,t)
∂x2 + f(u, v), x ∈ (0, lπ), t > 0,

∂v(x,t)
∂t = d2

∂2v(x,t)
∂x2 + g(u, v), x ∈ (0, lπ), t > 0,

∂u(x,t)
∂x =

∂v(x,t)
∂x = 0, x = 0, lπ, t ≥ 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ].

(2.2)

Now we identify n with u, ω with v, ωn2 − m with f (u, v), a − ω − ωn2 with g(u, v), d1 = 1, µ with d2.
In order to establish a high-order compact difference scheme, we rewrite (2.2) in the form, which is a
nonlinear diffusion reaction system:

∂W
∂t = D∂2W

∂x2 + R(W), x ∈ (0, lπ), t > 0, (2.3)

Wx(x, t) = 0, x = 0, or x = lπ, t ≥ 0, (2.4)

W(x, 0) = ϕ(x) ≥ 0, x ∈ [0, lπ], (2.5)

where

W =
[

u
v

]
,D =

[
d1 0
0 d2

]
,R(W) =

[
f(u, v)
g(u, v)

]
, ϕ =

[
u0

v0

]
.

The reaction term R(W) represents a non-linear function associated with the variable W.

2.1. High order compact difference scheme

In order to construct a high order compact difference scheme for solving (2.3)–(2.5), the region
divides [0, lπ] × [0,T ] into a uniform meshed. Take positive integers N and M, divide the interval [0, lπ]
into N equal parts, and [0,T ] into M equal parts. Define h = lπ

N , τ = T
M ; xi = 0 + ih, 0 ≤ i ≤ N;

tn = nτ, 0 ≤ n ≤ M; Ωh = {xi | 0 ≤ i ≤ N}; Ωτ = {tn | 0 ≤ n ≤ M}; Ωhτ = Ωh × Ωτ. Define the grid
function v =

{
vn

i | 0 ≤ i ≤ N, 0 ≤ n ≤ M
}

on Ωhτ, define

δ+t vn
i =

vn+1
i − vn

i

τ
, δxvn

i =
vn

i+1 − vn
i−1

2 h
, δ2

xvn
i =

vn
i+1 − 2vn

i + vn
i−1

h2 .
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2.1.1. Interior scheme

In developing a high-precision compact difference scheme for interior points, we refer to the work
presented by Wei JianYing in 2022 [24]. Define grid functions U =

{
Un

i | 0 ≤ i ≤ N, 0 ≤ n ≤ M
}

and

Ux =
{
Un

xi | 0 ≤ i ≤ N, 0 ≤ n ≤ M
}

on Ωhτ = Ωh × Ωτ, in which Un
i = W (xi, tn), Un

xi = Wx (xi, tn), At
nodes (xi, tn), considering Eq (2.3) with

Wt (xi, tn) = DWxx (xi, tn) + R (W (xi, tn)) , 0 < i < N. (2.6)

The second derivative term Wxx in space is approximated using a fourth-order compact difference
method for calculation

Wxx (xi, tn) = 2δ2
xUn

i − δxUn
xi + O

(
h4

)
. (2.7)

which i = 1, · · · ,N − 1, Bringing (2.7) into (2.6) can obtain

Wt (xi, tn) = 2Dδ2
xUn

i − DδxUn
xi + R

(
Un

i
)
+ O

(
h4

)
. (2.8)

Where δx and δ2
x represent the central difference operators of the first and second derivative terms of

the space, The definitions of δ+t Un
i , δxUn

xi and δ2
xUn

xi are the same as δ+t vn
i , δxvn

xi, and δ2
xvn

xi.
For the first order derivative term regarding time in (2.8), the Taylor series expansion method can

be used to obtain:
Wt (xi, tn) = δ+t Un

i −
τ

2
Wtt (xi, tn) + O

(
τ2

)
. (2.9)

In order to obtain a finite difference compact scheme with second-order accuracy in the time direction,
it is necessary to process Wtt in Eq (2.9). Take the first order partial derivative of Eq (2.3) with respect
to the variable t on both sides simultaneously. Then we get:

Wtt = DWxxt + R(W)t. (2.10)

Considering the value of Eq (2.10) at discrete nodes (such as node (xi, tn)). For the right end term of
Eq (2.10), the first order derivative term in time is discretized using forward difference, and the second
order derivative term in space is discretized using Eq (2.8), obtained

Wtt (xi, tn) = 2Dδ+t δ
2
xUn

i − Dδ+t δxUn
xi + δ

+
t R

(
Un

i
)
+ O

(
τ + h4/τ

)
. (2.11)

Now, substituting Eq (2.11) into Eq (2.9) and replace Wtt yields

Wt (xi, tn) = δ+t Un
i − τDδ+t δ

2
xUn

i +
τD
2
δ+t δxUn

xi −
τ

2
δ+t R

(
Un

i
)
+ O

(
τ2 + h4

)
. (2.12)

Bringing Eq (2.12) into Eq (2.8) and replacing Wt (xi, tn), we obtain the following: δ+t Un
i − τDδ+t δ

2
xUn

i +
τD
2 δ
+
t δxUn

xi −
τ
2δ
+
t R

(
Un

i

)
+ O

(
τ2 + h4

)
= 2Dδ2

xUn
i − DδxUn

xi + R
(
Un

i

)
+ O

(
h4

)
.

(2.13)

The high order term is represented by Sn
i , and the high-order term in Eq (2.13) is replaced by Sn

i , we
get:

δ+t Un
i − τDδ+t δ

2
xUn

i +
τD
2
δ+t δxUn

xi −
τ

2
δ+t R

(
Un

i
)
= 2Dδ2

xUn
i − DδxUn

xi + R
(
Un

i
)
+ Sn

i . (2.14)
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Where 1 ≤ i ≤ N − 1, 0 ≤ n ≤ M, such that∣∣∣Sn
i

∣∣∣ ≤ M1

(
τ2 + τh2 + h4

)
, 1 ≤ i ≤ N − 1, 0 ≤ n ≤ M.

Note the boundary conditions (2.4) and initial conditions (2.5) of system (2.3), and discretize the initial
boundary conditions to obtain:

Un
x0 = 0,Un

xN = 0, 0 ≤ n ≤ M, (2.15)

U0
i = ϕ (xi) , 0 ≤ i ≤ N. (2.16)

Omit the higher-order term Sn
i in Eq (2.14), replace Un

i with Wn
i , and replace Un

xi with Wn
xi. Then, the

following difference format can be established for problems (2.3)–(2.5):

δ+t Wn
i − τDδ+t δ

2
x Wn

i +
τD
2
δ+t δxWn

xi −
τ

2
δ+t R

(
Wn

i
)
= 2Dδ2

x Wn
i − DδxWn

xi + R
(
Wn

i
)
, (2.17)

Wn
x0 = 0, Wn

xN = 0, 0 ≤ n ≤ M, (2.18)

W0
i = ϕ (xi) , 0 ≤ i ≤ N. (2.19)

Denote R(Wn
i ) as Rn

i . Equation (2.17) can also be expressed as:

− D
h2

(
Wn+1

i+1 +Wn+1
i−1

)
+

(
1
τ
+ 2D

h2

)
Wn+1

i

= D
h2

(
Wn

i+1 +Wn
i−1

)
+

(
1
τ
− 2D

h2

)
Wn

i −
D

4 h

(
Wn+1

xi+1 −Wn+1
xi−1

)
− D

4 h

(
Wn

xi+1 −Wn
xi−1

)
+

(Rn+1
i +Rn

i )
2 .

(2.20)

Using the fourth order Pade scheme [25] for the spatial first derivative term Wxi appearing in Eq (2.20):

1
6

(Wx)i−1 +
2
3

(Wx)i +
1
6

(Wx)i+1 =
Wi+1 −Wi−1

2 h
+ O

(
h4

)
, 1 ≤ i ≤ N − 1. (2.21)

Moreover, we have

Wxi = D0

(
1 −

1
6

h2D+D−

)
Wi. (2.22)

Where
D0 Wi =

Wi+1−Wi−1
2 h , D+D−Wi =

Wi+1−2 Wi+Wi−1
h2 .

The difference scheme (2.20) is a two-layer compact implicit scheme, and the calculation of unknown
time layers only involves three grid points. From the above derivation process, it can be seen that
the truncation error of the format is O

(
τ2 + h4

)
, and when τ = O

(
h2

)
, this format has second-order

accuracy in the temporal direction and fourth-order accuracy in the spatial direction.

2.1.2. Boundary scheme

The value of Wx at the boundary point is given by the Neumann boundary condition of Eq (2.15).
In order to ensure the overall fourth order accuracy of the difference scheme (2.20), the calculation
formula for W at the boundary points is derived using the five point fourth order differential formula
of Wx and combined with homogeneous Neumann boundary conditions.

Let η (x) be a function defined on interval C1 [x0, x4], and ηx (x0) = 0 , given that the function value
of η (x) at node x0 < x1 < x2 < x3 < x4 is η (xk) , (k = 0, 1, 2, 3, 4). Let x0, x1, x2, x3 and x4 be
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equidistant nodes, assume xk+1 − xk = h, (k = 0, 1, 2, 3). On the interval [x0, x4], perform a quartic
Largerange interpolation function on η (x) and take the derivative of the interpolation remainder. Using
the method of undetermined coefficients [26], we can obtain

ηx (x0) =
1

12 h1

[
−25η (x0) + 48η (x1) − 36η (x2) + 16η (x3) − 3η (x4)

]
+

h4
1

5
η(5)(ζ). (2.23)

Since ζ ∈ [x0, x4], ignoring the higher-order term in (2.22), it can be inferred from the homogeneous
Neumann boundary condition that ηx (x0) = 0 , transfer available:

η (x0) =
1

25
[
48η (x1) − 36η (x2) + 16η (x3) − 3η (x4)

]
. (2.24)

Similarly, if η (x) is defined as a function on the interval C1 [xN−4, xN], ηx (xN) = 0, then

η (xN) =
1

25
[
48η (xN−1) − 36η (xN−2) + 16η (xN−3) − 3η (xN−4)

]
. (2.25)

From this, the computation formula for the unknown function W at the boundary point can be obtained:
Wn

0 =
1
25

(
48 Wn

1 − 36 Wn
2 + 16 Wn

3 − 3 Wn
4
)
+ O

(
h4

)
,

Wn
N =

1
25

(
48 Wn

N−1 − 36Wn
N−2 + 16 Wn

N−3 − 3 Wn
N−4

)
+ O

(
h4

)
,

0 < n ≤ M.

(2.26)

3. Stability analysis

The Fourier analysis method is used to analyze the stability of the difference schemes (2.17)–(2.20),
and by accurately establishing the R(W) term, the difference scheme (2.20) can be further transformed

− D
h2

(
Wn+1

i+1 +Wn+1
i−1

)
+

(
1
τ
+ 2D

h2

)
Wn+1

i

= D
h2

(
Wn

i+1 +Wn
i−1

)
+

(
1
τ
− 2D

h2

)
Wn

i −
D
4h

(
Wn+1

xi+1 −Wn+1
xi−1

)
− D

4h

(
Wn

xi+1 −Wn
xi−1

)
.

(3.1)

At grid points (xi, tn), set
(Wx)n

i = β
neθIi,Wn

i = α
neθIi. (3.2)

Where I =
√
−1, βn, αn are the amplitudes of the Nth layer, θ = 2πI

λ
is the phase angle in the x direction,

and λ is the wavelength. By substituting (3.2) into Eq (3.1) and simplifying it, it can be obtained that:

− D
h2

(
eθI + e−θI

)
αn+1 +

(
1
τ
+ 2D

h2

)
αn+1

= D
h2

(
eθI + e−θI

)
αn +

(
1
τ
− 2D

h2

)
αn − D

4 h

(
eθI − e−θI

)
βn+1 − D

4 h

(
eθI − e−θI

)
βn.

(3.3)

For the sake of simplicity, we will not consider the impact of Wx the calculation format on the stability
of the difference scheme at the boundary. Simplify Eq (3.2) by substituting it into Eq (2.21) to obtain:

βn =
3
(
eθI − e−θI

)
h
(
e−θI + 4 + eθI

)αn. (3.4)
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Substitute formula (3.4) into Eq (3.3) and simplify it to obtain:[
−2D

cos(θ) − 1
h2 +

1
τ
−

D
2

3 sin2(θ)
h2(2 + cos(θ))

]
αn+1 =

[
2D

cos(θ) − 1
h2 +

1
τ
+

D
2

3 sin2(θ)
h2(2 + cos(θ))

]
αn. (3.5)

Simplify one term of Eq (3.5): 2D cos(θ)−1
h2 + D

2
3 sin2(θ)

h2(2+cos(θ))=
D(4 cos(θ)+cos2(θ)−5)

2 h2(2+cos(θ))
. Thus, the error amplification

factor Z = αn+1

αn =
1
τ+G
1
τ−G

is obtained, where

G =
D

(
4 cos(θ) + cos2(θ) − 5

)
2 h2(2 + cos(θ))

=
D(cos(θ) − 1)(cos(θ) + 5)

2 h2(2 + cos(θ))
. (3.6)

From Eq (3.6), it can be seen that G ≤ 0, thus the square of the error amplification factor

modulus ∥Z∥2 = ( 1
τ+G)2

( 1
τ−G)2 ≤ 1, i.e., the difference scheme (2.20) is unconditionally stable.

4. Numerical simulation

The vegetation-water model (2.1) does not yield an exact solution. Therefore, in this paper, we
construct a diffusion system with an exact solution to validate the convergence and accuracy of our
difference scheme.

We verify the accuracy and convergence of the high-precision compact difference scheme by solving
the following numerical examples. We use the L2 norm error to measure the accuracy of the differential
schemes, The definitions of the error:

• L2 =

√
h
∑

i

(
uexact

i − unum
i

)2
.

The definition of convergence rate is:

• Rate = log(E1/E2)
log(h1/h2) .

in which E1 and E2 represent the errors corresponding to the different spatial step-lengths h1 and h2,
respectively.

As an example, let us consider a one-dimensional diffusion system as follows:
∂u
∂t = D11∆u + D12v,
∂v
∂t = D21∆v + D22u,
x ∈ (0, 6π), t > 0.

(4.1)

The initial condition is
u = cos(2x), v = cos(x). (4.2)

The boundary conditions of the variables are Neumann boundary conditions, i.e.,{ ∂u(0,t)
∂x = 0, ∂u(6π,t)

∂x = 0,
∂v(0,t)
∂x = 0, ∂v(6π,t)

∂x = 0.
(4.3)

Which, D11 = D21 = β are the diffusion coefficient, D12 and D12 are constants. The analytical solution
is

u = e−4tβ cos(2x), v = e−tβ cos(x). (4.4)
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In this paper, the differential scheme (2.20), (2.21) and (2.25) are used to solve the model (4.1),
when T = 4, τ = 0.005, β = 1. The numerical solutions of u(x, t) and v(x, t) obtained through
the differential scheme computation, as well as the visual comparison of their evolution in space and
time with the exact solution, are presented in Figures 1 and 2, respectively. From the figures, it can
be observed that the numerical results closely match the analytical results. Both u(x, t) and v(x, t)
eventually stabilize over time, while exhibiting periodic variations in the spatial dimension. The L2

errors and convergence orders of u(x, t) and v(x, t) obtained from the scheme calculation are presented
in Table 1. From the table, it can be seen that the L2 error of u(x, t) achieves fourth-order accuracy in the
spatial dimension, and similarly, the L2 error of v(x, t) also achieves fourth-order accuracy in the spatial
dimension. The computational results indicate that the difference scheme method used in this study
exhibits good convergence. By employing this system as a reference, we assess the performance of our
difference scheme and compare the results against the known exact solution. Through this verification
process, we demonstrate the convergence and accuracy of our framework. Our findings contribute
to the validation and reliability of our proposed methodology for modeling vegetation-water systems,
enhancing our understanding and facilitating informed decision-making in the field of environmental
science.

Table 1. L2 error and convergence order of u(x, t) and v(x, t).

N
u(x, t) v(x, t)

L2 error Rate L2 error Rate
10 2.417e-01 2.402e-01
20 1.125e-02 4.42 1.122e-02 4.42
40 2.275e-04 5.63 2.279e-04 5.62
80 5.833e-06 5.29 5.866e-06 5.28

Figure 1. The left image: The numerical solution of u(x, t); The right image: The exact
solution of u(x, t).
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Figure 2. The left image: The numerical solution of v(x, t); The right image: The exact
solution of v(x, t).

Next, with respect to model (2.1), reference [23] applied bifurcation theory to analyze the
emergence of Hopf branches, Turing branches, and Turing Hopf branches near steady-state solutions,
providing necessary conditions for their occurrence. Two disturbance parameters ε = (ε1, ε2) ∈ R2 are
selected as control parameters to study the impact of disturbances on the dynamic behavior of plant
and water. It can be roughly divided into four states: spatial non-homogeneous steady-state, spatial
homogeneous steady-state, spatial homogeneous periodic solution, and spatial non-homogeneous
periodic solution. Thus, where ε2 is the perturbation of parameter µ, and the calculation formula for
the steady-state solution is [23]:

n∗ (ε1) =
a∗ + ε1 +

√
(a∗ + ε1)2

− 4m2

2m
, ω∗ (ε1) =

a∗ + ε1 −
√

(a∗ + ε1)2
− 4m2

2
.

Next, we select parameters different from the original text, use the difference schemes (2.20), (2.21),
and (2.25) to solve the model (2.1), and give the spatio-temporal dynamic distribution of vegetation
and water. The calculation area is x ∈ [0, 30π],T ∈ [0, 1500], the space step size is h = 30π

150 , the time
step is τ = 0.05, the initial values are set to random perturbations of (n∗ (ε1) , ω∗ (ε1)) and µ∗ = µ − ε2,
Other parameter values: m = 3, µ = 3, Figures 1–4 are the numerical simulation result of model (2.1).

Figure 3 shows that system (2.1) has a stable solution, Figure 4 shows that system (2.1) has a
stable spatially homogeneous periodic solution, Figure 5 shows that system (2.1) has a spatially non
homogeneous periodic solution, Figure 6 shows that the system (2.1) converges to a spatially
non-uniform steady state. Minor changes in parameters can cause switching between four different
states: uniform state, temporal periodic state, spatially non-uniform steady state, and spatially
non-uniform periodic state. This essentially indicates that vegetation in arid environments is fragile,
and if precipitation decreases, the area where the vegetation is located will become desertification.
The numerical results also show that vegetation biomass and water density are negatively correlated in
space, and the places with more vegetation biomass have less water density, while the places with less
vegetation biomass have more water density.
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Figure 3. When(ε1, ε2) = (0.01,−0.06). The left image: the dynamics of plant; The right
image: the dynamics of water.

Figure 4. When(ε1, ε2) = (−0.00003,−0.03). The left image:the dynamics of plant; The
right image: the dynamics of water.

AIMS Mathematics Volume 9, Issue 2, 3836–3849.



3846

0 10 20 30

1.4

1.45

1.5

0 10 20 30
2.06

2.08

2.1

2.12

2.14

2.16

2.18

Figure 5. When(ε1, ε2) = (0.001, 0.004). The above image: the dynamics of plant; The
below image: the dynamics of water.

Figure 6. When(ε1, ε2) = (0.0021, 0.0049). The left image:the dynamics of plant; The right
image: the dynamics of water.
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5. Conclusions

In this paper, we present a high-precision compact difference scheme for a vegetation water model
in a flat environment. The proposed scheme achieves fourth-order accuracy in the spatial direction
and second-order accuracy in the temporal direction for both the interior point and boundary point
formulations of the model. First, the Fourier analysis method is used to prove that the high-precision
compact difference scheme is unconditionally stable. Second, the convergence and accuracy of the
scheme are verified through numerical examples. Then, the model is numerically solved and
simulated, and the effects of parameter perturbations on vegetation and hydrodynamic systems are
obtained, causing the dynamic system to switch in four different state. This will also provide guidance
for desertification warning and control in arid and semi-arid areas. The highly refined finite difference
scheme plays an important role in solving vegetation water models. In the future, high-precision
compact difference schemes for vegetation water models will be established in two-dimensional
regions, and further analysis of system (2.1) will be conducted.
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