In this paper, we consider a Li-Yau gradient estimate on the positive solution to the following nonlinear parabolic equation
$ \frac{\partial}{\partial t}f = \Delta f+af(\ln f)^{p} $
with Neumann boundary conditions on a compact Riemannian manifold satisfying the integral Ricci curvature assumption, where $ p\geq 0 $ is a real constant. This contrasts Olivé's gradient estimate, which works mainly for the heat equation rather than nonlinear parabolic equations and the result can be regarded as a generalization of the Li-Yau [P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201] and Olivé [X. R. Olivé, Neumann Li-Yau gradient estimate under integral Ricci curvature bounds, Proc. Amer. Math. Soc., 147 (2019), 411–426] gradient estimates.
Citation: Hao-Yue Liu, Wei Zhang. Neumann gradient estimate for nonlinear heat equation under integral Ricci curvature bounds[J]. AIMS Mathematics, 2024, 9(2): 3881-3894. doi: 10.3934/math.2024191
In this paper, we consider a Li-Yau gradient estimate on the positive solution to the following nonlinear parabolic equation
$ \frac{\partial}{\partial t}f = \Delta f+af(\ln f)^{p} $
with Neumann boundary conditions on a compact Riemannian manifold satisfying the integral Ricci curvature assumption, where $ p\geq 0 $ is a real constant. This contrasts Olivé's gradient estimate, which works mainly for the heat equation rather than nonlinear parabolic equations and the result can be regarded as a generalization of the Li-Yau [P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201] and Olivé [X. R. Olivé, Neumann Li-Yau gradient estimate under integral Ricci curvature bounds, Proc. Amer. Math. Soc., 147 (2019), 411–426] gradient estimates.
[1] | P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201. https://doi.org/10.1007/BF02399203 doi: 10.1007/BF02399203 |
[2] | R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom., 1 (1993), 113–126. https://doi.org/10.1090/S0002-9939-99-04967-9 doi: 10.1090/S0002-9939-99-04967-9 |
[3] | G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159, 2002. |
[4] | J. F. Li, X. J. Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math., 226 (2011), 4456–4491. https://doi.org/10.1016/j.aim.2010.12.009 doi: 10.1016/j.aim.2010.12.009 |
[5] | B. Peng, Y. D. Wang, G. D. Wei, Yau type gradient estimates for $\Delta u+au(\log u)^{p}+bu = 0$ on Riemannian manifolds, J. Math. Anal. Appl., 498 (2021), 124963. https://doi.org/10.1016/j.jmaa.2021.124963 doi: 10.1016/j.jmaa.2021.124963 |
[6] | J. Y. Wu, Elliptic gradient estimates for a nonlinear heat equation and applications, Nonlinear Anal., 151 (2017), 1–17. https://doi.org/10.1016/j.na.2016.11.014 doi: 10.1016/j.na.2016.11.014 |
[7] | L. V. Dai, N. T. Dung, N. D. Tuyen, L. Zhao, Gradient estimates for weighted $p$-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds, Kodai Math. J., 45 (2022), 19–37. https://doi.org/10.2996/kmj/kmj45102 doi: 10.2996/kmj/kmj45102 |
[8] | X. J. Xu, Gradient estimates for $u_{t} = \Delta F(u)$ on manifolds and some Liouvilletype theorems, J. Differential Equations, 252 (2012), 1403–1420. https://doi.org/10.1016/j.jde.2011.08.004 doi: 10.1016/j.jde.2011.08.004 |
[9] | X. B. Zhu, Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds, Nonlinear Anal., 74 (2011), 5141–5146. https://doi.org/10.1016/j.na.2011.05.008 doi: 10.1016/j.na.2011.05.008 |
[10] | Y. Li, X. R. Zhu, Harnack estimates for a heat-type equation under the Ricci flow, J. Differential Equations, 260 (2016), 3270–3301. https://doi.org/10.1016/j.jde.2015.10.024 doi: 10.1016/j.jde.2015.10.024 |
[11] | I. P. de Jesus, A. M. Oliveira, M. R. Clark, P. P. A. Oliveira, Controllability for semilinear heat equation with globally Lipschitz nonlinearities and memory term, Nonlinear Anal. Real World Appl., 60 (2021), 103277. https://doi.org/10.1016/j.nonrwa.2020.103277 doi: 10.1016/j.nonrwa.2020.103277 |
[12] | I. P. de Jesus, S. B. de Menezes, On the approximate controllability of Stackelberg-Nash strategies for linear heat equations in $R^{N}$ with potentials, Appl. Anal., 94 (2015), 780–799. https://doi.org/10.1080/00036811.2014.901503 doi: 10.1080/00036811.2014.901503 |
[13] | J. P. Wang, Global heat kernel estimates, Pacific J. Math., 178 (1997), 377–398. https://doi.org/10.2140/pjm.1997.178.377 doi: 10.2140/pjm.1997.178.377 |
[14] | R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. Amer. Math. Soc., 108 (1990), 961–970. https://doi.org/10.2307/2047954 doi: 10.2307/2047954 |
[15] | P. Petersen, G. F. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal., 7 (1997), 1031–1045. https://doi.org/10.1007/s000390050036 doi: 10.1007/s000390050036 |
[16] | D. Yang, Convergence of Riemannian manifolds with integral bounds on curvature. I, Ann. Sci. École Norm. Sup., 25 (1992), 77–105. https://doi.org/10.24033/asens.1644 |
[17] | P. Petersen, G. F. Wei, Analysis and geometry on manifolds with integral Ricci curvature bounds. II, Trans. Amer. Math. Soc., 353 (2001), 457–478. https://doi.org/10.1090/S0002-9947-00-02621-0 doi: 10.1090/S0002-9947-00-02621-0 |
[18] | Q. S. Zhang, M. Zhu, Li-Yau gradient bounds on compact manifolds under nearly optimal curvature conditions, J. Funct. Anal., 275 (2018), 478–515. https://doi.org/10.1016/J.JFA.2018.02.001 doi: 10.1016/J.JFA.2018.02.001 |
[19] | Q. S. Zhang, M. Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc., 145 (2017), 3117–3126. https://doi.org/10.1090/proc/13418 doi: 10.1090/proc/13418 |
[20] | X. Z. Dai, G. F. Wei, Z. L. Zhang, Local Sobolev constant estimate for integral Ricci curvature bounds, Adv. Math., 325 (2018), 1–33. https://doi.org/10.1016/j.aim.2017.11.024 doi: 10.1016/j.aim.2017.11.024 |
[21] | W. Wang, Harnack inequality, heat kernel bounds and eigenvalue estimates under integral Ricci curvature bounds, J. Differential Equations, 269 (2020), 1243–1277. https://doi.org/10.1016/j.jde.2020.01.003 doi: 10.1016/j.jde.2020.01.003 |
[22] | W. Wang, Elliptic-type gradient estimates under integral Ricci curvature bounds, Proc. Amer. Math. Soc., 150 (2022), 4965–4979. https://doi.org/10.1090/proc/14774 doi: 10.1090/proc/14774 |
[23] | J. H. Wang, Elliptic gradient estimate for heat equation with integral Ricci curvature condition, Acta Math. Sinica (Chinese Ser.), 65 (2022), 763–774. https://doi.org/10.12386/A20210040 doi: 10.12386/A20210040 |
[24] | J. Wang, Y. D. Wang, Gradient estimates for $\Delta u+a(x)u\log u+b(x)u = 0$ and its parabolic countepart under integral Ricci curvature bounds, arXiv preprint arXiv: 2109.05235, 2022. |
[25] | X. R. Olivé, Neumann Li-Yau gradient estimate under integral Ricci curvature bounds, Proc. Amer. Math. Soc., 147 (2019), 411–426. https://doi.org/10.1090/proc/14213 doi: 10.1090/proc/14213 |
[26] | C. Rose, Heat kernel upper bound on Riemannian manifolds with locally uniform Ricci curvature integral bounds, J. Geom. Anal., 27 (2017), 1737–1750. https://doi.org/10.1007/S12220-016-9738-3 doi: 10.1007/S12220-016-9738-3 |
[27] | M. Choulli, L. Kayser, E. M. Ouhabaz, Observations on Gaussian upper bounds for Neumann heat kernels, Bull. Aust. Math. Soc., 92 (2015), 429–439. https://doi.org/10.1017/S0004972715000611 doi: 10.1017/S0004972715000611 |
[28] | S. Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque, 157 (1988), 191–216. |