In this paper, we focus on the strong product of the pentagonal networks. Let $ R_{n} $ be a hexagonal network composed of $ 2n $ pentagons and $ n $ quadrilaterals. Let $ P_{n}^{2} $ denote the graph formed by the strong product of $ R_{n} $ and its copy $ R_{n}^{\prime} $. By utilizing the decomposition theorem of the normalized Laplacian characteristics polynomial, we characterize the explicit formula of the multiplicative degree-Kirchhoff index completely. Moreover, the complexity of $ P_{n}^{2} $ is determined.
Citation: Ze-Miao Dai, Jia-Bao Liu, Kang Wang. Analyzing the normalized Laplacian spectrum and spanning tree of the cross of the derivative of linear networks[J]. AIMS Mathematics, 2024, 9(6): 14594-14617. doi: 10.3934/math.2024710
In this paper, we focus on the strong product of the pentagonal networks. Let $ R_{n} $ be a hexagonal network composed of $ 2n $ pentagons and $ n $ quadrilaterals. Let $ P_{n}^{2} $ denote the graph formed by the strong product of $ R_{n} $ and its copy $ R_{n}^{\prime} $. By utilizing the decomposition theorem of the normalized Laplacian characteristics polynomial, we characterize the explicit formula of the multiplicative degree-Kirchhoff index completely. Moreover, the complexity of $ P_{n}^{2} $ is determined.
[1] | J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan Press Ltd., 1976. |
[2] | F. R. K. Chung, Spectral graph theory, American Mathematical Society, 1997. |
[3] | H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005 |
[4] | A. Dobrynin, Branchings in trees and the calculation of the Wiener index of a tree, MATCH Commun. Math. Comput. Chem., 41 (2000), 119–134. |
[5] | R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Mathematical Journal, 26 (1976), 283–296. |
[6] | L. H. Feng, X. M. Zhu, W. J. Liu, Wiener index, Harary index and graph properties, Discrete Appl. Math., 223 (2017), 72–83. https://doi.org/72-83.10.1016/j.dam.2017.01.028 |
[7] | A. Abiad, B. Brimkov, A. Erey, On the Wiener index, distance cospectrality and transmission-regular graphs, Discrete Appl. Math., 230 (2017), 1–10. https://doi.org/10.1016/j.dam.2017.07.010 doi: 10.1016/j.dam.2017.07.010 |
[8] | Y. P. Mao, Z. Wang, I. Gutman, Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs, Discrete Appl. Math., 219 (2017), 167–175. https://doi.org/167-175.10.1016/j.dam.2016.11.014 |
[9] | A. R. Ashrafi, A. Ghalavand, Ordering chemical trees by Wiener polarity index, Appl. Math. Comput., 313 (2017), 301–312. https://doi.org/301-312.10.1016/j.amc.2017.06.005 |
[10] | M. Crepnjak, N. Tratnik, The Szeged index and the Wiener index of partial cubes with applications to chemical graphs, Appl. Math. Comput., 309 (2017), 324–333. https://doi.org/324-333.10.1016/j.amc.2017.04.011 |
[11] | A. Mohajeri, P. Manshour, M. Mousaee, A novel topological descriptor based on the expanded Wiener index: applications to QSPR/QSAR studies, Iran. J. Math. Chem., 8 (2017), 107–135. |
[12] | I. Gutman, Selected properties of the schultz molecular topological index, Journal of Chemical Information and Computer Sciences, 34 (1994), 1087–1089. |
[13] | D. J. Klein, Resistance-distance sum rules, Croat. Chem. Acta, 75 (2002), 633–649. |
[14] | D. J. Klein, O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit, J. Math. Chem., 30 (2001), 271–287. https://doi.org/10.1023/A:1015119609980 |
[15] | H. Y. Chen, F. J. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math., 155 (2007), 654–661. https://doi.org/10.1016/j.dam.2006.09.008 doi: 10.1016/j.dam.2006.09.008 |
[16] | L. H. Feng, I. Gutman, G. H. Yu, Degree Kirchhoff index of unicyclic graphs, Match (2013). |
[17] | J. Huang, S. H. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs, B. Aust. Math. Soc., 91 (2015), 353–367. https://doi.org/10.1017/S0004972715000027 doi: 10.1017/S0004972715000027 |
[18] | Y. L. Yang, T. Y. Yu, Graph theory of viscoelasticities for polymers with starshaped, multiple-ring and cyclic multiple-ring molecules, Macromol. Chem. Phys., 186 (1985), 609–631. |
[19] | G. H. Yua, L. H. Feng, On connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem., 69 (2013), 611–628. |
[20] | X. L. Ma, B. Hong, The normalized Laplacians, degree-Kirchhoff index and the spanning trees of cylinder phenylene chain, Polycyclic Aromatic Compounds, 41 (2021), 1159–1179. https://doi.org/10.1080/10406638.2019.1665553 doi: 10.1080/10406638.2019.1665553 |
[21] | L. Lei, X. Y. Geng, S. Li, Y. Peng, Y. Yu, On the normalized Laplacian of Mobius phenylene chain and its applications, Int. J. Quantum Chem., 119 (2019), e26044. https://doi.org/10.1002/qua.26044 doi: 10.1002/qua.26044 |
[22] | U. Ali, Y. Ahmad, S. A. Xu, X. F. Pan, On Normalized Laplacian, Degree-Kirchhoff Index of the Strong Prism of Generalized Phenylenes, Polycyclic Aromatic Compounds, 42 (2022), 6215–6232. https://doi.org/10.1080/10406638.2021.1977351 doi: 10.1080/10406638.2021.1977351 |
[23] | X. Y. Geng, L. Yu, On the Kirchhoff index and the number of spanning trees of linear phenylenes chain, Polycyclic Aromatic Compounds, 42 (2022), 4984–4993. https://doi.org/10.1080/10406638.2021.1923536 doi: 10.1080/10406638.2021.1923536 |
[24] | J. B. Liu, Z. Y. Shi, Y. H. Pan, J. D. Cao, Computing the Laplacian spectrum of linear octagonal-quadrilateral networks and its applications, Polycyclic Aromatic Compounds, 42 (2020), 1–12. https://doi.org/10.1080/10406638.2020.1748666 doi: 10.1080/10406638.2020.1748666 |
[25] | C. Liu, Y. H. Pan, J. P. Li, On the Laplacian spectrum and Kirchhoff index of generalized phenylenes, Polycyclic Aromatic Compounds, 41 (2019), 1–10. https://doi.org/10.1080/10406638.2019.1703765 doi: 10.1080/10406638.2019.1703765 |
[26] | I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Model., 36 (1996), 982–985. |