Research article

Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases

  • Received: 27 January 2024 Revised: 03 April 2024 Accepted: 09 April 2024 Published: 22 April 2024
  • MSC : 26A33, 26D15, 47H08, 47H10

  • This paper study was designed to establish solutions for mixed functional fractional integral equations that involve the Riemann-Liouville fractional operator and the Erdélyi-Kober fractional operator to describe biological population dynamics in Banach space. The results rely on the measure of non-compactness and theoretical concepts from fractional calculus. Darbo's fixed-point theorem for Banach spaces has been utilized. Moreover, the solvability of a specific non-linear integral equation that models the spread of infectious diseases with a seasonally varying periodic contraction rate has been explored by using the Banach contraction principle. Finally, two numerical examples demonstrate the practical application of these findings in the realm of fractional integral equation theory.

    Citation: Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri. Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases[J]. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709

    Related Papers:

  • This paper study was designed to establish solutions for mixed functional fractional integral equations that involve the Riemann-Liouville fractional operator and the Erdélyi-Kober fractional operator to describe biological population dynamics in Banach space. The results rely on the measure of non-compactness and theoretical concepts from fractional calculus. Darbo's fixed-point theorem for Banach spaces has been utilized. Moreover, the solvability of a specific non-linear integral equation that models the spread of infectious diseases with a seasonally varying periodic contraction rate has been explored by using the Banach contraction principle. Finally, two numerical examples demonstrate the practical application of these findings in the realm of fractional integral equation theory.



    加载中


    [1] R. P. Agarwal, M. Meehan, Fixed point theory and applications, New York: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005
    [2] M. A. Alyami, M. A. Darwish, On asymptotic stable solutions of a quadratic Erdélyi-Kober fractional functional integral equation with linear modification of the arguments, Chaos Solitons Fract., 131 (2020), 109475. https://doi.org/10.1016/j.chaos.2019.109475 doi: 10.1016/j.chaos.2019.109475
    [3] A. Barnett, L. Greengard, T. Hagstrom, High-order discretization of a stable time-domain integral equation for 3D acoustic scattering, J. Comput. Phys., 402 (2020), 109047. https://doi.org/10.1016/j.jcp.2019.109047 doi: 10.1016/j.jcp.2019.109047
    [4] X. Y. Zhang, A new strategy for the numerical solution of nonlinear Volterra integral equations with vanishing delays, Appl. Math. Comput., 365 (2020), 124608. https://doi.org/10.1016/j.amc.2019.124608 doi: 10.1016/j.amc.2019.124608
    [5] V. E. Tarasov, Generalized memory: Fractional calculus approach, Fractal Fract., 2 (2018). https://doi.org/10.3390/fractalfract2040023 doi: 10.3390/fractalfract2040023
    [6] Humaira, H. A. Hammad, M. Sarwar, M. D. L. Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0
    [7] R. A. Aljethi, A. Kılıçman, Analysis of fractional differential equation and its application to realistic data, Chaos, Solitons Fract., 171 (2023), 113446. https://doi.org/10.1016/j.chaos.2023.113446 doi: 10.1016/j.chaos.2023.113446
    [8] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. D. L. Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential euations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579
    [9] H. A. Hammad, H. Aydi, H. Işık, M. D. L. Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Math., 8 (2023), 6913-6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
    [10] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [11] R. C. Guerra, On the solution of a class of integral equations using new weighted convolutions, J. Integral Equ. Appl., 34 (2022), 39–58. https://doi.org/10.1216/jie.2022.34.39 doi: 10.1216/jie.2022.34.39
    [12] K. Jangid, S. D. Purohit, R. Agarwal, On Gruss type inequality involving a fractional integral operator with a multi-index Mittag-Leffler function as a kernel, Appl. Math. Inf. Sci., 16 (2022), 269–276. http://dx.doi.org/10.18576/amis/160214 doi: 10.18576/amis/160214
    [13] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, T. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [14] M. Z. Sarikaya, Z. Dahmani, M. E. Kieis, F. Ahmad, $(k, s)$- Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77–89.
    [15] J. Xu, H. Wu, Z. Tan, Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations, J. Math. Anal. Appl., 427 (2015), 307–319. https://doi.org/10.1016/j.jmaa.2015.02.043 doi: 10.1016/j.jmaa.2015.02.043
    [16] H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
    [17] H. A. Hammad, M. D. L. Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Fract., 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092 doi: 10.3390/fractalfract7010092
    [18] Z. Cui, Z. Zhou, Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions, Fixed Point Theory Algorithms Sci. Eng., 2023 (2023), 1. https://doi.org/10.1186/s13663-022-00738-3 doi: 10.1186/s13663-022-00738-3
    [19] S. Deb, H. Jafari, A. Das, V. Parvaneh, New fixed point theorems via measure of noncompactness and its application on fractional integral equation involving an operator with iterative relations, J. Inequal. Appl., 2023 (2023), 106. https://doi.org/10.1186/s13660-023-03003-2 doi: 10.1186/s13660-023-03003-2
    [20] B. C. Dhage, Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Anal., 70 (2009), 2485–2493. https://doi.org/10.1016/j.na.2008.03.033 doi: 10.1016/j.na.2008.03.033
    [21] A. Aghajani, M. Mursaleen, A. A. S. Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci., 35 (2015), 552–566. https://doi.org/10.1016/S0252-9602(15)30003-5 doi: 10.1016/S0252-9602(15)30003-5
    [22] M. Javahernia, A. Razani, F. Khojasteh, Common fixed point of the generalized Mizoguchi-Takahashi's type contractions, Fixed Point Theory Appl., 2014 (2014), 195. https://doi.org/10.1186/1687-1812-2014-195 doi: 10.1186/1687-1812-2014-195
    [23] B. Mohammadi, A. A. S. Haghighi, M. Khorshidi, M. D. L. Sen, V. Parvaneh, Existence of solutions for a system of integral equations using a generalization of Darbo's fixed point theorem, Mathematics, 8 (2020), 492. https://doi.org/10.3390/math8040492 doi: 10.3390/math8040492
    [24] M. Jleli, E. Karapinar, D. O'Regan, B. Samet, Some generalization of Darbo's theorem and applications to fractional integral equations, Fixed Point Theory Appl., 2016 (2016), 11. https://doi.org/10.1186/s13663-016-0497-4 doi: 10.1186/s13663-016-0497-4
    [25] C. Corduneanu, Integral equations and applications, New York: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511569395
    [26] B. C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equations, Nonlinear Anal. Theory Methods Appl., 70 (2009), 1912–1922. https://doi.org/10.1016/j.na.2008.02.109 doi: 10.1016/j.na.2008.02.109
    [27] B. C. Dhage, S. B. Dhage, H. K. Pathak, A generalization of Darbo's fixed point theorem and local attractivity of generalized nonlinear functional integral equations, Differ. Equ. Appl., 7 (2015), 57–77. https://doi.org/10.7153/dea-07-05 doi: 10.7153/dea-07-05
    [28] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [29] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control., 30 (2024), 632–647. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
    [30] R. Arab, H. K. Nashine, N. H. Can, T. T. Binh, Solvability of functional-integral equations (fractional order) using measure of noncompactness, Adv. Differ. Equ., 2020 (2020), 12. https://doi.org/10.1186/s13662-019-2487-4 doi: 10.1186/s13662-019-2487-4
    [31] A. Das, S. A. Mohiuddine, A. Alotaibi, B. C. Deuri, Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces, Alex. Eng. J., 61 (2022), 2010–2015. https://doi.org/10.1016/j.aej.2021.07.031 doi: 10.1016/j.aej.2021.07.031
    [32] S. A. Mohiuddine, A. Das, A. Alotaibi, Existence of solutions for nonlinear integral equations in tempered sequence spaces via generalized Darbo-type theorem, J. Funct. Spaces, 2022 (2022), 4527439. https://doi.org/10.1155/2022/4527439 doi: 10.1155/2022/4527439
    [33] M. E. Gurtin, R. C. MacCamy, Nonlinear age-dependent population dynamics, Arch. Ration. Mech. Anal., 54 (1974), 281–300.
    [34] J. A. Metz, O. Diekmann, The dynamics of physiologically structured population, Berlin: Springer, 1986. https://doi.org/10.1007/978-3-662-13159-6
    [35] L. M. Cushing, Forced asymptotically periodic solutions of predator-prey systems with or without hereditary effects, SIAM J. Appl. Math., 30 (1976), 665–674. https://www.jstor.org/stable/2100328
    [36] F. Brauer, On a nonlinear integral equation of population growth problems, SIAM J. Math. Anal., 6 (1975), 312–317. https://doi.org/10.1137/0506031 doi: 10.1137/0506031
    [37] Y. Kuong, Differential equations with applications in population dynamics, Boston: Academic Press, 1993.
    [38] R. K. Miller, On Volterra's population equations, SIAM J. Appl. Math., 14 (1966), 446–452. https://www.jstor.org/stable/2946219
    [39] H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173–187. https://doi.org/10.1007/BF00279720 doi: 10.1007/BF00279720
    [40] G. F. Webb, Theory of nonlinear age-dependent population dynamics, New York: Marcel Dekker, 1985.
    [41] A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665. https://doi.org/10.1016/j.aej.2021.11.039 doi: 10.1016/j.aej.2021.11.039
    [42] J. Banás, K. Goebel, Measures of non-Compactness in Banach spaces, New York: Marcel Dekker, 1980.
    [43] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), 84–92.
    [44] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Willey & Sons, 1993.
    [45] G. Pagnini, Erdelyi-Kober fractional diffusion, Fract. Calc. Appl. Anal., 15 (2012), 117–127. https://doi.org/10.2478/s13540-012-0008-1 doi: 10.2478/s13540-012-0008-1
    [46] R. Diaz, E. Pariguan, On hypergeometric functions and $\kappa$- Pochhammer symbol, Divulg. Mat., 15 (2007), 179–192.
    [47] C. G. Kokologiannaki, Properties and inequalities of generalized $\kappa -$gamma, beta and zeta function, Int. J. Contemp. Math. Sci., 5 (2010), 653–660.
    [48] C. G. Kokologiannaki, V. Krasniqi, Some properties of $\kappa$- gamma function, ITM Web Conf., 7 (2016), 1–6. https://doi.org/10.1051/itmconf/20160707003 doi: 10.1051/itmconf/20160707003
    [49] S. Mubeen, G. M. Habibullah, $\kappa $-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [50] R. W. Leggett, L. R. Williams, A fixed point theorem with application to an infectious disease model, J. Math. Anal. Appl., 76 (1980), 91–97. https://doi.org/10.1016/0022-247X(80)90062-1 doi: 10.1016/0022-247X(80)90062-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(443) PDF downloads(31) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog