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EKF Erdélyi-Kober fractional
BPD biological population dynamics
BS Banach space
MNC measure of non-compactness
FP fixed point
IEs integral equations
BCP Banach contraction principle
FC fractional calculus
TSS tempered sequence space
GF gamma function
RLκ-F Riemann-Liouville κ-fractional

1. Introduction

Fractional calculus (FC) serves as a widely-used mathematical tool for characterizing nonlocal
diffusion in various physical studies. Its applications span across engineering, physics, and the analysis
of natural occurrences where fractional analysis plays a crucial role. By leveraging the gamma function
in analytical contexts, FC plays a significant role in mathematical analysis, enabling the study of
integrals and derivatives for real or complex orders. Through FC, diverse phenomena and their
impacts in scientific and engineering domains like the frequency dispersion of power, electromagnetics,
viscoelasticity, electrochemistry, and diffusion waves can be effectively demonstrated. Furthermore,
fractional relaxation oscillation and fading memory have also been explored.

Fractional operators are valuable for the effective modeling of functional-fractional integral
equations (FIEs) to investigate a range of issues, such as the fractal nature of materials, porous media
seepage flow, and nonlinear earthquake oscillations. Functional-FIEs are pivotal across various fields
and in the analysis diverse concrete models. Various disciplines like cytotoxic activity theory, statistical
mechanics theory, radioactive transmission theory, and acoustic scattering heavily rely on nonlinear
FIEs in practical applications [1–10].

Fixed point (FP) theory and the measure of non-compactness (MNC) are instrumental in examining
various real-world scenarios represented by FIEs [11–19]. Initially introduced by Stephen Banach, FP
theory has garnered a significant amount of attention across multiple scientific fields. Its efficacy has
been widely recognized in the mathematical community owing to its potential applications in neural
networks, healthcare, immunology, and aerospace, as well as its connections to recrystallization theory,
wave analysis, phase-transition theory, programming language analysis, and more.

For non-linear functional integral equations (IEs), Dhage [20] provided global attractivity findings
by means of an FP theorem of the Krasnoselskii type. Aghajani et al. [21] examined the FP findings
for Meir-Keeler condensing maps using an MNC. Javahernia et al. [22], examined common FPs for
Mizoguchi-Takahashi contractive maps. Mohammadi et al. [23] employed an extension of Darbo’s
FP theorem to determine if a system of IEs has a solution. Darbo’s theorem was proven for multiple
generalizations, and Jleli et al. [24] looked into whether it applied to FIEs. Functional FIE equations
can also be solved with the use of FP theory. Numerous real-world problems have been significantly
solved with the help of various types of functional FIEs. For more details, see [25–29].

Recently, a number of research articles regarding FP theory and its applications have been
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published. The solvability of functional FIEs was studied by Arab et al. [30] in 2020 using a MNC

v(τ) = ψ (τ, v(τ)) +
Wv(τ)
Γ (λ)

τ∫
0

(K(τ) − K(s))λ−1 K′(s)g (τ, s, v(τ)) ds, λ ∈ (0, 1), τ ∈ [0, 1].

By introducing a new µ-set contraction operator and utilizing control functions in Banach spaces
(BSs), existence results were established by using MNC methods and an extended version of Darbo’s
FP theorem.

The existence of implicit FIEs in a tempered sequence space (TSS) was studied by Das et al. [31]
by generalizing a Darbo-type theorem

Qn(ζ) = Rn

ζ,Q(ζ),

ζ∫
c

K′(s)Wn (ζ, s,Q(s))
(K(ζ) − K(s))1−λ ds

 , λ ∈ (0, 1), ζ ∈ [c, S ], S > 0,

where Q(ζ) ∈ {Qn(ζ)}∞n=1 ⊂ Ω and Ω is a sequence in a BS. For the TSS `
ζ
p (1 < p < ∞), existence

results were derived by using MNC and Darbo’s FP theorem approaches.
Mohiuddine et al. [32] demonstrated that non-linear IEs have solutions in a TSS by an extended

Darbo-type theorem.

Qn(ζ) = Rn

ζ,Q(ζ),

ζ∫
c

Gn (ζ, s,Q(s)) ds

 , n ∈ N, ζ ∈ [0, S ], S > 0,

where Q(ζ) ∈ {Qn(ζ)}∞n=1 . The authors demonstrated the existence of solutions to the IEs by using the
concept of MNC and Darbo’s FP theorem in TSS C

([
[0, S ], `ζp

])
.

In this article, we investigate the (ϕ, θ)−generalized Riemann-Liouville fractional (RLF) integral
operator θ

ϕIρ,`c , where ` ∈ (0, 1), θ ∈ R\{0} and ϕ, c, ρ > 0, for a continuous function Φ as follows:

(
θ
ϕIρ,`c Φ

)
(τ) =

θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ∫
c

exp

`
(
τθ − sθ

)
(` − 1)

 (τθ − sθ
) ρ
ϕ−1

sθ−1Φ(s)ds.

Moreover, we introduce the Erdélyi-Kober fractional (EKF) integral operator Ĩηξ,c, where ξ, c > 0 and
η ∈ (0, 1) for a continuous function Φ as follows:

(
Ĩηξ,cΦ

)
(τ) =

ξ

Γ(η)

τ∫
c

sξ−1Φ (s)

(τξ − sξ)1−ηds. (1.1)

A range of fractional operators that have been developed and categorized into broad groups according
to their traits and behaviors can be used to assess the biological population dynamics (BPD). In our
work, we express the (ϕ, θ)−generalized RLF and EKF operators in terms of each other to prove an
essential relationship between them, using the notion of FC with respect to (w.r.t.) the same map on
the BS C([1, S ]).

In addition, from the standpoint of implementation, the primary objective of this article is to
incorporate a hybrid fractional operators into a BPD model that accounts for the detection of the birth
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rate increase Φ (τ) at any time τ to enable essential planning for the future. Mixed type IEs associated
with a (ϕ, θ)−generalized RLF together with the EKF operator results in the following dependency of
the birthrate Φ (τ) on prior birthrates Φ

(
τϑ − sϑ

)
for women in the childbearing age range s ∈ [1, S ]

given ϑ > 1:

Φ (τ) = κ (τ) + r
(
τ, P (τ,Φ (τ)) ,

(
θ
ϕIρ,`1 Φ

)
(τ)

)
+ R

(
τ,Q (τ,Φ (τ)) ,

(
Ĩηξ,1Φ

)
(τ)

)
, (1.2)

where Φ (s) is the possibility that the female will live to age s, κ (τ) , P (τ,Φ (τ)) , and Q (τ,Φ (τ)) are
the variables added to account for females who were born before the oldest child-bearing women of a
certain age (s = S ). In addition, `, η ∈ (0, 1), θ ∈ R+, ϕ, ρ, ξ > 0, and τ ∈ J = [1, S ], S > 0.

This concept has been the subject of extensive study by a number of scholars, notably Gurtin and
MacCamy [33]. A thorough explanation of the application of mathematical models in physiologically
structured populations has been provided by Metz and Diekmann [34]. Cushing provides an extensive
analysis of the research on predator delay [35]. See [36–41] for a comprehensive examination of
age-dependent Parkinson’s disease.

In this paper, we discuss the motivation for the analysis of Eq (1.2) and the details of our findings.
To generalize the subjects of FC approaches, we investigate FIEs in connection with BPD modeling
in this paper. Our second step involves examining earlier studies conducted in this area. Secondly,
we think that the proposed FP consequence has the advantage of reducing the MNC demand, which
is important for some FP outcomes. Our findings support, amplify, and reinforce findings that have
already been published. Furthermore, the solvability of a particular non-linear IE that models the
transmission of particular infectious diseases with a seasonally variable periodic contraction rate has
been investigated by using the Banach contraction principle (BCP). Finally, we present two examples
to illustrate the significance of our findings.

Our paper is summarized as follows. Some preliminary definitions and theories related to the
problem under study are presented in Section 2. Section 3 is concerned with finding theoretical
solutions to the problem under study under appropriate conditions in BSs. In Section 4, by using the
BCP, we investigate the solution of a special non-linear IE (4.1) that models the spread of particular
infectious diseases with a seasonal periodic contraction rate. In Section 5, we evaluate the applicability
of our findings by looking at a few examples derived from the BPD models. Finally, a conclusion and
some open problems are defined the future are expressed in Section 6.

2. Preliminaries

To facilitate the discussion of our key findings, we offer notations, definitions, and extra details in
this section. Let Ω = C(J) be the space of real-valued continuous functions defined on J = [1, S ].
Define the norm ‖.‖ by

‖$‖ = sup {|$ (τ)| : τ ∈ J} , for some $ ∈ Ω.

Henceforth, the symbols< [ω, z0] , f, Con f, R+, N
∗, ∅, ΛΩ and ∆Ω refer to a closed ball with center

ω and radius z0 in Ω, the closure of a subsetf of Ω, the convex hull of a subsetf, the set of all positive
real numbers, the set of all natural numbers without zero, the empty set, the class of all non-empty
bounded subsets of Ω, and the subfamily of all relatively compact subsets, respectively.

Definition 2.1. [42] A function = : ΛΩ → R+ is called a MNC in Ω if the assumptions below hold:
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(1) f ∈ ΛΩ and = (f) = 0 imply that f is precompact;
(2) ker ψ ⊂ ∆Ω and ker ψ =

{
f ∈ ΛΩ : = (f) = 0

}
is non-void;

(3) f ⊆ f1 implies that =(f) ≤ =(f1);
(4) =

(
f

)
= = (f) ;

(5) = (con f) = = (f) ;
(6) For all κ ∈ [0, 1], = (κf + (1 − κ)f1) ≤ κ= (f) + (1 − κ)= (f1) ;
(7) If fn ∈ ΛΩ, =

(
f

)
= = (f) , fn+1 ⊆ fn, n = 1, 2, ..., and limn→∞=(fn) = 0, then f∞ =

∩∞m=1fn , ∅.

Definition 2.2. [42] Assume that z (, ∅) is a bounded subset of C(J). Then, for all ε > 0 there exists
$ ∈ z such that the modulus of continuity of $ is described by

d ($, ε) = sup {|$(τ2) −$(τ1)| : τ1, τ2 ∈ J; |τ2 − τ1| ≤ ε} ,

with
d (z, ε) = sup {d ($, ε) : $ ∈ z} and d0 (z) = lim

ε→0
d (z, ε) ,

where the map d0 (z) is a regular MNC in C(J). Also, there is a Hausdorff MNC =, which is given by
= (z) = 1

2d0 (z) .

Remark 2.3. The symbol ker ψ refers to the kernel of MNC =. In addition, f∞ ∈ ker = and =(f∞) ≤
=(fn) for n ≥ 1, then, we have that =(f∞) = 0. Hence f∞ ∈ ker ψ.

Theorem 2.4. [43] (Darbo’s FP theorem) Let = be an MNC, Ω be a BS and Υ ⊆ Ω be non-empty,
bounded, closed, and convex. Assume that ℵ : Υ → Υ is a continuous mapping. Then, ℵ has a FP in
Υ provided that the following inequality is true

= (ℵE) ≤ σ= (E) , E ⊂ Υ, for a constant σ ∈ [0, 1).

Definition 2.5. [44] For a continuous mapping $, the RLF integral of order η > 0 is described by

Iηc$ (τ) =
1

Γ(η)

τ∫
c

$ (s) (τ − s)η−1ds, τ ∈ (c, d],

where Γ(.) is the Euler GF. The well-known Cauchy formula serves as the inspiration for the
RL integral:

τ∫
c

ds1

s1∫
c

ds2...

sn−1∫
c

$ (sn) dsn =
1

(n − 1)!

τ∫
c

$ (s) (τ − s)n−1ds, n ∈ N∗.

In 2012, Pagnini [45] investigated an EKF operator as follows:

Definition 2.6. For a sufficiently well-behaved continuous function $ (v) , the EKF operator is
described by

Iη,βξ,c$ (v) =
ξ

Γ(β)
v−ξ(η+β)

v∫
c

sξ(η+1)−1

(vξ − sξ)1−β$ (s) ds,

where β, ξ, c > 0, η ∈ R.
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The usual GF, first described by Diaz and Pariguan [46], has been generalized into the κ-GF
as follows:

Definition 2.7. For a continuous function κ (ρ) , the κ−GF is defined by

Γκ (ρ) = lim
n→∞

n!κn(nκ)
ρ
κ−1

(ρ)n,κ
, κ, ρ > 0,

where (ρ)n,κ is the Pochhammer’s κ−symbol [47] for factorial functions. Additionally, the κ-GF is
denoted and described by the following integral form [48]:

Γκ (ρ) =

∞∫
0

e−
sκ
κ sρ−1ds, κ, ρ > 0.

Furthermore, as presented by Mubeen and Habibullah [49], the RLκ-F integral of the function $ of
order β > 0 is designated and defined by

Iρ,β0,κ$ (v) =
1

κΓκ (ρ)

v∫
0

(v − s)
β
κ−1$ (s) ds, κ, ρ, v > 0.

3. Main results

The main focus of this section is on whether Eq (1.2) can be solved in BS C(J). Let us consider that
<z0 = {Φ ∈ Ω : ‖Φ‖ ≤ z0} . In order to demonstrate our main theorem here, we take into account the
following assumptions:

A1 : κ : J → R is a bounded and continuous function with 1ג = supτ∈J |κ(τ)| .
A2 : r : J × R × R → R, P : J × R → R are continuous functions and there are constants ,2ג ,3ג 4ג ≥ 0

such that ∣∣∣∣r (τ, P, I1) − r
(
τ, P̂, Î1

)∣∣∣∣ ≤ 2ג ∣∣∣∣P − P̂
∣∣∣∣ + 3ג

∣∣∣∣I1 − Î1

∣∣∣∣ , for P, I1, P̂, Î1 ∈ R and τ ∈ J.

In addition, ∣∣∣P (τ,w) − P
(
τ, ŵ

)∣∣∣ ≤ 4ג ∣∣∣w − ŵ
∣∣∣ , w, ŵ ∈ R.

A3 : R : J × R × R→ R, Q : J × R→ R are continuous functions and there are constants ,5ג ,6ג 7ג ≥ 0
such that∣∣∣∣∣R (

τ,Q, Ĩ1

)
− R

(
τ, Q̂, Ĩ1

)∣∣∣∣∣ ≤ 5ג ∣∣∣∣Q − Q̂
∣∣∣∣ + 6ג

∣∣∣∣∣Ĩ1 − Ĩ1

∣∣∣∣∣ , for Q, Ĩ1, Q̂, Ĩ1 ∈ R and τ ∈ J.

In addition, ∣∣∣Q (τ,$) − Q
(
τ, $̂

)∣∣∣ ≤ 7ג ∣∣∣$ − $̂∣∣∣ , $, $̂ ∈ R.
A4 : There is a positive constant z0 such that

sup
τ∈J

∣∣∣∣κ(τ) + r (τ, P, I1) + R
(
τ,Q, Ĩ1

)∣∣∣∣ ≤ z0,
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for P ∈ [−P′, P′], I1 ∈ [−I′1, I
′
1], Q ∈ [−Q′,Q′] and Ĩ1 ∈ [−Ĩ′1, Ĩ

′
1], where

P′ = sup {|P (τ,Φ (τ))| : τ ∈ J, Φ (τ) ∈ [−z0, z0]} ,

I′1 = sup
{∣∣∣∣(θϕIρ,`1 Φ

)
(τ)

∣∣∣∣ : τ ∈ J, Φ (τ) ∈ [−z0, z0]
}
,

Q′ = sup {|Q (τ,Φ (τ))| : τ ∈ J, Φ (τ) ∈ [−z0, z0]} ,

Ĩ′1 = sup
{∣∣∣∣(Ĩηξ,1Φ)

(τ)
∣∣∣∣ : τ ∈ J, Φ (τ) ∈ [−z0, z0]

}
.

Additionally, 4ג2ג + 7ג5ג < 1.
A5 : There is a constant z0 > 0 such that

1ג + 4ג2ג) + (7ג5ג z0 + 3ג
θ−

ρ
ϕ e

`(S θ)
(`−1)

(
S θ − 1

) ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

) z0 + 6ג
S ξη

Γ (η + 1)
z0 ≤ z0.

Remark 3.1. Based on (A2) and (A3), one has

|P (τ, 0)| = 0, |r (τ, 0, 0)| = 0, |Q (τ, 0)| = 0, |R (τ, 0, 0)| = 0.

Theorem 3.2. With the help of Remark 3.1, the problem given be Eq (1.2) has a solution in C(J)
provided that the hypotheses (A1)–(A5) are true.

Proof. Define an operator ℵ : <z0 → Ω as follows:

(ℵΦ) (τ) = κ (τ) + r
(
τ, P (τ,Φ (τ)) ,

(
θ
ϕIρ,`1 Φ

)
(τ)

)
+ R

(
τ,Q (τ,Φ (τ)) ,

(
Ĩηξ,1Φ

)
(τ)

)
.

Thus, the problem turns into the problem of finding the FP of the operator ℵ. In other words, solving
Eq (1.2) is equivalent to finding the FP of the operator ℵ. To achieve this, we divide the proof into the
following cases:
Case 1. Prove that ℵ maps<z0 into<z0 . Then, for Φ ∈ <z0 , we have

|(ℵΦ) (τ)| =
∣∣∣∣κ (τ) + r

(
τ, P (τ,Φ (τ)) ,

(
θ
ϕIρ,`1 Φ

)
(τ)

)
+ R

(
τ,Q (τ,Φ (τ)) ,

(
Ĩηξ,1Φ

)
(τ)

)∣∣∣∣
≤ |κ (τ)| +

∣∣∣∣r (
τ, P (τ,Φ (τ)) ,

(
θ
ϕIρ,`1 Φ

)
(τ)

)
− r (τ, 0, 0)

∣∣∣∣ + |r (τ, 0, 0)|

+
∣∣∣∣R (

τ,Q (τ,Φ (τ)) ,
(
Ĩηξ,1Φ

)
(τ)

)
− R (τ, 0, 0)

∣∣∣∣ + |R (τ, 0, 0)|

≤ 1ג + 2ג |P (s,Φ (s))| + 3ג
∣∣∣∣(θϕIρ,`1 Φ

)
(τ)

∣∣∣∣ + 5ג |Q (τ,Φ (τ))| + 6ג
∣∣∣∣(Ĩηξ,1Φ)

(τ)
∣∣∣∣

≤ 1ג + 2ג [|P (τ,Φ (τ)) − P(τ, 0)| + |P(τ, 0)|] + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ)
∣∣∣∣

5ג+ [|Q (τ,Φ (τ)) − Q (τ, 0)| + |Q (τ, 0)|] + 6ג

∣∣∣∣(Ĩηξ,1Φ)
(τ)

∣∣∣∣
≤ 1ג + 4ג2ג |Φ (τ)| + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ)
∣∣∣∣ + 7ג5ג |Φ (τ)| + 6ג

∣∣∣∣(Ĩηξ,1Φ)
(τ)

∣∣∣∣ , (3.1)

where ∣∣∣∣(θϕIρ,`1 Φ
)

(τ)
∣∣∣∣ =

∣∣∣∣∣∣∣∣ θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ∫
1

e

 `(τθ−sθ)
`−1

 (
τθ − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds

∣∣∣∣∣∣∣∣
AIMS Mathematics Volume 9, Issue 6, 14574–14593.
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≤
θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

)
∣∣∣∣∣∣∣∣

τ∫
1

e

 `(τθ−sθ)
`−1

 (
τθ − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds

∣∣∣∣∣∣∣∣
≤

z0θ
1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

)e
(
`S θ
`−1

) τ∫
1

(
τθ − sθ

) ρ
ϕ−1

sθ−1ds

≤
z0θ
−
ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

)e
(
`S θ
`−1

) (
S θ − 1

) ρ
ϕ
, (3.2)

and

∣∣∣∣(Ĩηξ,1Φ)
(τ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣ ξ

Γ(η)

τ∫
1

sξ−1Φ (s)

(τξ − sξ)1−ηds

∣∣∣∣∣∣∣∣
≤

ξ

Γ(η)

τ∫
1

sξ−1 |Φ (s)|

(τξ − sξ)1−ηds

≤
z0ξ

Γ(η + 1)
S ξη. (3.3)

Applying Eqs (3.2) and (3.3) in Eq (3.1) and using A5 with |Φ (τ)| ≤ z0, we have

‖ℵΦ‖ ≤ 1ג + 4ג2ג |Φ (τ)| + 3ג
θ−

ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

)e
(
`S θ
`−1

) (
S θ − 1

) ρ
ϕ z0 + 7z0ג5ג + 6ג

ξS ξη

Γ(η + 1)
z0 < z0.

Hence, ℵ maps<z0 into<z0 .

Case 2. Show that ℵ is continuous in <z0 . For this, assume that ε > 0 and Φ,Φ ∈ <z0 such that∥∥∥Φ − Φ
∥∥∥ < ε; we get∣∣∣∣(ℵΦ) (τ) −

(
ℵΦ

)
(τ)

∣∣∣∣
=

∣∣∣∣κ (τ) + r
(
τ, P (τ,Φ (τ)) ,

(
θ
ϕIρ,`1 Φ

)
(τ)

)
+ R

(
τ,Q (τ,Φ (τ)) ,

(
Ĩηξ,1Φ

)
(τ)

)
− κ (τ) − r

(
τ, P

(
τ,Φ (τ)

)
,
(
θ
ϕIρ,`1 Φ

)
(τ)

)
− R

(
τ,Q

(
τ,Φ (τ)

)
,
(
Ĩηξ,1Φ

)
(τ)

)∣∣∣∣
≤ 2ג

∣∣∣∣P (τ,Φ (τ)) − P
(
τ,Φ (τ)

)∣∣∣∣ + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ) −
(
θ
ϕIρ,`1 Φ

)
(τ)

∣∣∣∣
5ג+

∣∣∣∣Q (τ,Φ (τ)) − Q
(
τ,Φ (τ)

)∣∣∣∣ + 6ג

∣∣∣∣(Ĩηξ,1Φ)
(τ) −

(
Ĩηξ,1Φ

)∣∣∣∣
≤ 4ג2ג

∣∣∣Φ (τ) − Φ (τ)
∣∣∣ + 7ג5ג

∣∣∣Φ (τ) − Φ (τ)
∣∣∣ + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ) −
(
θ
ϕIρ,`1 Φ

)
(τ)

∣∣∣∣
6ג+

∣∣∣∣(Ĩηξ,1Φ)
(τ) −

(
Ĩηξ,1Φ

)∣∣∣∣ , (3.4)

where ∣∣∣∣(θϕIρ,`1 Φ
)

(τ) −
(
θ
ϕIρ,`1 Φ

)
(τ)

∣∣∣∣
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=

∣∣∣∣∣∣∣∣ θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ∫
1

e

 `(τθ−sθ)
`−1

 (
τθ − sθ

) ρ
ϕ−1

sθ−1
[
Φ(s) − Φ(s)

]
ds

∣∣∣∣∣∣∣∣
≤

θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

)
∣∣∣∣∣∣∣∣

τ∫
1

e

 `(τθ−sθ)
`−1

 (
τθ − sθ

) ρ
ϕ−1

sθ−1
[
Φ(s) − Φ(s)

]
ds

∣∣∣∣∣∣∣∣
<

θ−
ρ
ϕ e

(
`S θ
`−1

) (
S θ − 1

) ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

) ∣∣∣Φ (s) − Φ (s)
∣∣∣ (3.5)

and ∣∣∣∣(Ĩηξ,1Φ)
(τ) −

(
Ĩηξ,1Φ

)∣∣∣∣ =

∣∣∣∣∣∣∣∣ ξ

Γ(η)

τ∫
1

sξ−1

(τξ − sξ)1−η

[
Φ (s) − Φ (s)

]
ds

∣∣∣∣∣∣∣∣
≤

ξ

Γ(η)

τ∫
1

sξ−1

(τξ − sξ)1−η

∣∣∣Φ (s) − Φ (s)
∣∣∣ ds

≤
ξS ξη

Γ(η + 1)

∣∣∣Φ (s) − Φ (s)
∣∣∣ . (3.6)

By applying Eqs (3.5) and (3.6) in Eq (3.4) and taking the supremum with
∥∥∥Φ − Φ

∥∥∥ < ε, we
conclude that

∥∥∥ℵΦ − ℵΦ
∥∥∥ ≤ 4εג2ג + 7εג5ג + 3ג

θ−
ρ
ϕ e

(
`S θ
`−1

) (
S θ − 1

) ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

) ε + 6ג
ξS ξη

Γ(η + 1)
ε. (3.7)

Letting ε → 0 in Eq (3.7), we have ∥∥∥ℵΦ − ℵΦ
∥∥∥→ 0,

which implies that ℵ is continuous in<z0 .

Case 3. Show the estimation of ℵ with respect to d0. For this, consider a z (, ∅) ⊆ <z0 . In addition, let
z ∈ <z0 and τ1, τ2 ∈ J with τ1 ≤ τ2 such that |τ2 − τ1| ≤ ε; then, we get

|(ℵΦ) (τ2) − (ℵΦ) (τ1)|

=
∣∣∣∣κ (τ2) + r

(
τ2, P (τ2,Φ (τ2)) ,

(
θ
ϕIρ,`1 Φ

)
(τ2)

)
+ R

(
τ2,Q (τ2,Φ (τ2)) ,

(
Ĩηξ,1Φ

)
(τ2)

)
− κ (τ1) − r

(
τ1, P (τ1,Φ (τ1)) ,

(
θ
ϕIρ,`1 Φ

)
(τ1)

)
− R

(
τ1,Q (τ1,Φ (τ1)) ,

(
Ĩηξ,1Φ

)
(τ1)

)∣∣∣∣
≤ |κ (τ2) − κ (τ1)|

+
∣∣∣∣r (
τ2, P (τ2,Φ (τ2)) ,

(
θ
ϕIρ,`1 Φ

)
(τ2)

)
− r

(
τ1, P (τ1,Φ (τ1)) ,

(
θ
ϕIρ,`1 Φ

)
(τ1)

)∣∣∣∣
+

∣∣∣∣R (
τ2,Q (τ2,Φ (τ2)) ,

(
Ĩηξ,1Φ

)
(τ2)

)
− R

(
τ1,Q (τ1,Φ (τ1)) ,

(
Ĩηξ,1Φ

)
(τ1)

)∣∣∣∣ ,
which implies that

|(ℵΦ) (τ2) − (ℵΦ) (τ1)|
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≤ |κ (τ2) − κ (τ1)|

+
∣∣∣∣r (
τ2, P (τ2,Φ (τ2)) ,

(
θ
ϕIρ,`1 Φ

)
(τ2)

)
− r

(
τ2, P (τ2,Φ (τ2)) ,

(
θ
ϕIρ,`1 Φ

)
(τ1)

)∣∣∣∣
+

∣∣∣∣r (
τ2, P (τ2,Φ (τ2)) ,

(
θ
ϕIρ,`1 Φ

)
(τ1)

)
− r

(
τ2, P (τ1,Φ (τ1)) ,

(
θ
ϕIρ,`1 Φ

)
(τ1)

)∣∣∣∣
+

∣∣∣∣r (
τ2, P (τ1,Φ (τ1)) ,

(
θ
ϕIρ,`1 Φ

)
(τ1)

)
− r

(
τ1, P (τ1,Φ (τ1)) ,

(
θ
ϕIρ,`1 Φ

)
(τ1)

)∣∣∣∣
+

∣∣∣∣R (
τ2,Q (τ2,Φ (τ2)) ,

(
Ĩηξ,1Φ

)
(τ2)

)
− R

(
τ2,Q (τ2,Φ (τ2)) ,

(
Ĩηξ,1Φ

)
(τ1)

)∣∣∣∣
+

∣∣∣∣R (
τ2,Q (τ2,Φ (τ2)) ,

(
Ĩηξ,1Φ

)
(τ1)

)
− R

(
τ2,Q (τ1,Φ (τ1)) ,

(
Ĩηξ,1Φ

)
(τ1)

)∣∣∣∣
+

∣∣∣∣R (
τ2,Q (τ1,Φ (τ1)) ,

(
Ĩηξ,1Φ

)
(τ1)

)
− R

(
τ1,Q (τ1,Φ (τ1)) ,

(
Ĩηξ,1Φ

)
(τ1)

)∣∣∣∣ ,
and

|(ℵΦ) (τ2) − (ℵΦ) (τ1)|

≤ d (κ, ε) + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ2) −
(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣
2ג+ |P (τ2,Φ (τ2)) − P (τ1,Φ (τ1))| + dr (J, ε)

6ג+

∣∣∣∣(Ĩηξ,1Φ)
(τ2) −

(
Ĩηξ,1Φ

)
(τ1)

∣∣∣∣ + 5ג |Q (τ2,Φ (τ2)) − Q (τ1,Φ (τ1))| + dR (J, ε) .

It follows that

|(ℵΦ) (τ2) − (ℵΦ) (τ1)|

≤ d (κ, ε) + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ2) −
(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣ + dr (J, ε)

2ג+ [|P (τ2,Φ (τ2)) − P (τ2,Φ (τ1))| + |P (τ2,Φ (τ1)) − P (τ1,Φ (τ1))|]

6ג+

∣∣∣∣(Ĩηξ,1Φ)
(τ2) −

(
Ĩηξ,1Φ

)
(τ1)

∣∣∣∣ + dR (J, ε)

5ג+ [|Q (τ2,Φ (τ2)) − Q (τ2,Φ (τ1))| + |Q (τ2,Φ (τ1)) − Q (τ1,Φ (τ1))|]
≤ d (κ, ε) + 4ג2ג |Φ (τ2) − Φ (τ1)| + 2dPג (J, ε) + dr (J, ε) + dR (J, ε)

7ג5ג+ |Φ (τ2) − Φ (τ1)| + 5dQג (J, ε)

3ג+

∣∣∣∣(θϕIρ,`1 Φ
)

(τ2) −
(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣ + 6ג

∣∣∣∣(Ĩηξ,1Φ)
(τ2) −

(
Ĩηξ,1Φ

)
(τ1)

∣∣∣∣ ,
where

d (κ, ε) = sup {|κ (τ2) − κ (τ1)| : τ2, τ1 ∈ J; |τ2 − τ1| ≤ ε} ,

dP (J, ε) = sup {|P (τ2,Φ) − P (τ1,Φ)| : τ2, τ1 ∈ J; |τ2 − τ1| ≤ ε} ,

dr (J, ε) = sup {|r (τ2, P, I1) − r (τ1, P, I1)| : τ2, τ1 ∈ J; |τ2 − τ1| ≤ ε} ,

dR (J, ε) = sup {|R (τ2,Q, I1) − R (τ1,Q, I1)| : τ2, τ1 ∈ J; |τ2 − τ1| ≤ ε} ,

dQ (J, ε) = sup {|Q (τ2,Φ) − Q (τ1,Φ)| : τ2, τ1 ∈ J; |τ2 − τ1| ≤ ε} .

In addition,

∣∣∣∣(θϕIρ,`1 Φ
)

(τ2) −
(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣ =

∣∣∣∣∣∣∣∣ θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ2∫
1

e

 `(τθ2−sθ)
`−1

 (
τθ2 − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds
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−
θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ1∫
1

e

 `(τθ1−sθ)
`−1

 (
τθ1 − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ2∫
1

e

 `(τθ2−sθ)
`−1

 (
τθ2 − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds

−
θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ1∫
1

e

 `(τθ2−sθ)
`−1

 (
τθ2 − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ1∫
1

e

 `(τθ2−sθ)
`−1

 (
τθ2 − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds

−
θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ1∫
1

e

 `(τθ1−sθ)
`−1

 (
τθ1 − sθ

) ρ
ϕ−1

sθ−1Φ(s)ds

∣∣∣∣∣∣∣∣ ,
which yields ∣∣∣∣(θϕIρ,`1 Φ

)
(τ2) −

(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣
≤

θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ2∫
τ1

e

 `(τθ2−sθ)
`−1

 (
τθ2 − sθ

) ρ
ϕ−1

sθ−1 |Φ(s)| ds

+
θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕΓ

(
ρ

ϕ

) τ2∫
1

∣∣∣∣∣∣∣
e

 `(τθ2−sθ)
`−1

 (
τθ2 − sθ

) ρ
ϕ−1
− e

 `(τθ1−sθ)
`−1

 (
τθ1 − sθ

) ρ
ϕ−1

 sθ−1Φ(s)

∣∣∣∣∣∣∣ ds

≤
θ−

ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

)e
(
`S θ
`−1

) (
S θ − 1

) ρ
ϕ
‖Φ‖

+
‖Φ‖ θ1− ρϕ

`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

) τ2∫
1

∣∣∣∣∣∣∣
e

 `(τθ2−sθ)
`−1

 (
τθ2 − sθ

) ρ
ϕ−1
− e

 `(τθ1−sθ)
`−1

 (
τθ1 − sθ

) ρ
ϕ−1

 sθ−1

∣∣∣∣∣∣∣ ds,

and ∣∣∣∣(Ĩηξ,1Φ)
(τ2) −

(
Ĩηξ,1Φ

)
(τ1)

∣∣∣∣
=

∣∣∣∣∣∣∣∣ ξ

Γ(η)

τ2∫
1

sξ−1Φ (s)(
τ
ξ
2 − sξ

)1−ηds −
ξ

Γ(η)

τ1∫
1

sξ−1Φ (s)(
τ
ξ
1 − sξ

)1−ηds

∣∣∣∣∣∣∣∣
≤

ξ

Γ(η)

∣∣∣∣∣∣∣∣
τ2∫

1

sξ−1Φ (s)(
τ
ξ
2 − sξ

)1−ηds −
ξ

Γ(η)

τ1∫
1

sξ−1Φ (s)(
τ
ξ
2 − sξ

)1−ηds

∣∣∣∣∣∣∣∣
+

ξ

Γ(η)

∣∣∣∣∣∣∣∣
τ1∫

1

sξ−1Φ (s)(
τ
ξ
2 − sξ

)1−ηds −

τ1∫
1

sξ−1Φ (s)(
τ
ξ
1 − sξ

)1−ηds

∣∣∣∣∣∣∣∣
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≤
ξ

Γ(η)

τ2∫
τ1

sξ−1 |Φ (s)|(
τ
ξ
2 − sξ

)1−ηds +
ξ

Γ(η)

τ1∫
1

 sξ−1(
τ
ξ
2 − sξ

)1−η −
sξ−1(

τ
ξ
1 − sξ

)1−η

 |Φ (s)| ds

≤
‖Φ‖

Γ(η + 1)

[
2
(
τ
ξ
2 − τ

ξ
1

)η
−

(
τ
ξ
2 − 1

)η
+

(
τ
ξ
1 − 1

)η]
.

Since |τ2 − τ1| ≤ ε, one gets that τ2 → τ1. Thus,∣∣∣∣(θϕIρ,`1 Φ
)

(τ2) −
(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣→ 0 and
∣∣∣∣(Ĩηξ,1Φ)

(τ2) −
(
Ĩηξ,1Φ

)
(τ1)

∣∣∣∣→ 0. (3.8)

Hence,

|(ℵΦ) (τ2) − (ℵΦ) (τ1)| ≤ d (κ, ε) + 4dג2ג (Φ, ε) + 2dPג (J, ε) + dr (J, ε) + dR (J, ε)

7dג5ג (Φ, ε) + 5dQג (J, ε) + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ2) −
(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣
6ג+

∣∣∣∣(Ĩηξ,1Φ)
(τ2) −

(
Ĩηξ,1Φ

)
(τ1)

∣∣∣∣ ,
that is,

d (ℵΦ, ε) ≤ d (κ, ε) + 4ג2ג) + (7ג5ג d (Φ, ε) + 2dPג (J, ε) + dr (J, ε) + dR (J, ε)

5dQג+ (J, ε) + 3ג

∣∣∣∣(θϕIρ,`1 Φ
)

(τ2) −
(
θ
ϕIρ,`1 Φ

)
(τ1)

∣∣∣∣
6ג+

∣∣∣∣(Ĩηξ,1Φ)
(τ2) −

(
Ĩηξ,1Φ

)
(τ1)

∣∣∣∣ . (3.9)

From the uniform continuity of the functions κ, P, Q, r and R on J, J × [−z0, z0], J × [−z0, z0], J ×
[−P′, P′] × [−I′1, I

′
1] and J × [−Q′,Q′] × [−Ĩ′1, Ĩ

′
1], respectively; we have the following when ε → 0 :

d (κ, ε)→ 0, dP (J, ε)→ 0, dr (J, ε)→ 0, dR (J, ε)→ 0 and dQ (J, ε)→ 0. (3.10)

Applying Eqs (3.8) and (3.10) in Eq (3.9), and taking supΦ∈z and ε → 0 in Eq (3.9), we have

d0 (ℵz) ≤ 4ג2ג) + (7ג5ג d0 (z) .

Since 4ג2ג + 7ג5ג < 1, then all requirements of Theorem 2.4 are fulfilled. Therefore, ℵ has an FP, which
is a solution to our problem given be Eq (1.2) in C(J). This finishes the proof.

�

4. A result on infectious diseases

Since most differential equations and IEs that arise in many real-world problems are known to be
non-linear, FP theory offers a significant method for locating the solutions to these equations, which
are otherwise difficult to solve by using other conventional methods. Here, by using the BCP, we
investigate the solution of a special non-linear IE (4.1) that models the spread of particular infectious
diseases with a seasonal periodic contraction rate.

If we take
(
Ĩηξ,cΦ

)
(τ) = h(τ) with η = ξ = 1, c = τ−α > 0 and Φ (s) = υ(s, h(s)) in the EKF integral

operator given by Eq (1.1), then, we obtain

h(τ) =

τ∫
τ−α

υ(s, h(s))ds. (4.1)
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Equation (4.1) was presented by Leggett and Williams [50]. This equation can be used as a model
for the spread of various infectious illnesses, whose periodic contraction rate exhibits seasonal change,
where h(τ) is the number of people with diseases at time τ, υ(τ, h(τ)) is the number of infections in that
time period ( f (τ, 0) = 0), and α is the amount of time that a person can still spread a disease.

Let Ω be a BS with the norm

‖h − ~‖ = sup
τ∈R
|h(τ) − ~(τ)| , for all h, ~ ∈ Ω.

Assume that ℘ is a bounded subsets of Ω. Define an operator ℵ : ℘→ ℘ by

ℵh(τ) =

τ∫
τ−α

υ(s, h(s))ds,

where υ satisfies the following axioms:

(a1) The function υ : R × R+ → R is continuous;
(a2) For all h1, ~1 ∈ ℘,

‖υ(τ, h1(τ)) − υ(τ, h2(τ))‖ ≤ ‖h1(τ) − h2(τ)‖ .

Now, we shall introduce a simple proof of the following theorem:

Theorem 4.1. Assume that the axioms (a1) and (a2) are true; then, the problem given by Eq (4.1) has
a unique solution provided that α < 1.

Proof. For all h1, ~1 ∈ ℘, we have

‖ℵh1(τ) − ℵh2(τ)‖ =

∥∥∥∥∥∥∥∥
τ∫

τ−α

υ(s, h1(s))ds −

τ∫
τ−α

υ(s, h2(s))ds

∥∥∥∥∥∥∥∥
≤ ‖h1(τ) − h2(τ)‖


τ∫

τ−α

ds


≤ α ‖h1(τ) − h2(τ)‖ .

Since α < 1, the mapping ℵ is a contraction. Based on the BCP, ℵ has a unique FP. It is the unique
solution to the problem given by Eq (4.1). �

5. Supportive applications

In this section, we will examine a few applications of BPD modeling in order to assess the
effectiveness of our findings.

Example 5.1. Consider the following model:

Φ (τ) =
τ sin τ

7
+
τ3 tan−1 Φ (τ)

5 + 6τ3 +
cos Φ (τ)

1 + τ3 +

(
4
3
1
4
I2, 1

2
1 Φ

)
(τ)

45 +

(
Ĩ

1
8
1
4 ,1

Φ

)
(τ)

64
, (5.1)

AIMS Mathematics Volume 9, Issue 6, 14574–14593.



14587

where Φ (s) refers to the surge in the birthrate at any time τ, τ ∈ J = [1, 2].
Equation (5.1), compared to Eq (1.2), yields

κ (τ) =
τ sin τ

7
,

r (τ, P, I1) = P (τ,Φ (τ)) +
I1

45 ,

P (τ,Φ (τ)) =
τ3 tan−1 Φ (τ)

5 + 6τ3 ,(
4
3
1
4
I2, 1

2
1 Φ

)
(τ) =

37 × 412

47Γ(8)

τ∫
1

e−
(
τ

4
3 −s

4
3
) (
τ

4
3 − s

4
3
)7

s
1
3 Φ (s) ds,

(
Ĩ

1
8
1
4 ,1

Φ

)
(τ) =

1
4Γ(1

8 )

τ∫
1

s
−3
4 Φ (s)(

τ
1
4 − s

1
4

) 7
8

ds,

R
(
τ,Q, Ĩ1

)
= Q (τ,Φ (τ)) +

Ĩ1

64
,

Q (τ,Φ (τ)) =
cos Φ (τ)

1 + τ3 ,

where Φ (s) is the possibility that the female will live to age s, κ (τ) , P (τ,Φ (τ)) , and Q (τ,Φ (τ)) are
the variables added to account for females born before the oldest child-bearing women of a certain age
(s = 2) were born. The survival functions, R and r, measure the proportion of people who live to age τ.

Clearly, the functions κ, P, Q, r and R are continuous and satisfy

sup
τ∈J
|κ(τ)| = sup

τ∈J

∣∣∣∣∣τ sin τ
7

∣∣∣∣∣ ≤ 2
7
,∣∣∣∣r (τ, P, I1) − r

(
τ, P, I1

)∣∣∣∣ ≤ ∣∣∣P − P
∣∣∣ +

1
45

∣∣∣I1 − I1

∣∣∣ ,
|P (τ,Φ1 (τ)) − P (τ,Φ2 (τ))| ≤

1
6
|Φ1 − Φ2| ,∣∣∣∣∣R (

τ,Q, Ĩ1

)
− R

(
τ,Q, Ĩ1

)∣∣∣∣∣ ≤ ∣∣∣Q − Q
∣∣∣ +

1
64

∣∣∣∣∣Ĩ1 − Ĩ1

∣∣∣∣∣ ,
|Q (τ,Φ1 (τ)) − Q (τ,Φ2 (τ))| ≤

1
2
|Φ1 − Φ2| .

Hence, 1ג = 2
7 , 2ג = 5ג = 1, 3ג = 1

45 , 4ג = 1
6 , 6ג = 1

64 and 7ג = 1
8 . If ‖Q‖ ≤ z0, one has

P′ =
z0

6
, Q′ =

z0

2
, I′1 =

z0

(
38 × 45

)
43Γ(8)

e−2( 1
4 ) (

2( 4
3 ) − 1

)8
, and Ĩ′1 =

z08
(
2

1
4 − 1

) 1
8

Γ
(

1
8

) .

Additionally, the inequality created by Assumption A5 transforms into

1ג + 4ג2ג) + (7ג5ג z0 + 3ג
θ−

ρ
ϕ e

`(S θ)
(`−1)

(
S θ − 1

) ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

) z0 + 6ג
S ξη

Γ (η + 1)
z0
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=
2
7

+
7
24

z0 +
z038

42Γ(8)
e−2( 1

4 ) (
2( 4

3 ) − 1
)8

+
z0

(
2

1
4 − 1

) 1
8

8Γ
(

1
8

) ≤ z0. (5.2)

Taking z0 = 2, we have

P′ =
1
3
, Q′ = 1, I′1 =

2
(
38 × 45

)
43Γ(8)

e−2( 1
4 ) (

2( 4
3 ) − 1

)8
, and Ĩ′1 =

16
(
2

1
4 − 1

) 1
8

Γ
(

1
8

) .

Hence, Eq (5.2) satisfies

2
7

+
14
24

+
2 × 38

43Γ(8)
e−2( 1

4 ) (
2( 4

3 ) − 1
)8

+
2
(
2

1
4 − 1

) 1
8

8Γ
(

1
8

) ≤ 2.

Therefore the assumptions A1–A5 of Theorem (2.4) are satisfied. Then, the problem given by Eq (5.1)
has a solution on C([1, 2]).

Example 5.2. For more analysis, consider the following problem:

Φ (τ) =
τe−τ

4 + 2τ
+
τe−(1−τ)3

Φ (τ)
5

+
sin Φ (τ)
3 + τ2 +

(
5
3
1
4
I3, 1

3
1 Φ

)
(τ)

323 +

(
Ĩ

1
3
2
3 ,1

Φ

)
(τ)

5
, (5.3)

where Φ (s) refers to the surge in the birthrate at any time τ, τ ∈ J = [1, 2].
Equation (5.3) is a special case of Eq (1.2) with

κ (τ) =
τe−τ

4 + 2τ
,

r (τ, P, I1) = P (τ,Φ (τ)) +
I1

323 ,

P (τ,Φ (τ)) =
τe−(1−τ)3

Φ (τ)
5

,(
5
3
1
4
I3, 1

3
1 Φ

)
(τ) =

323 × 412

511 × Γ(12)

τ∫
1

e−
(
τ

5
3 −s

5
3
) (
τ

5
3 − s

5
3
)11

s
2
3 Φ (s) ds,

(
Ĩ

1
3
2
3 ,1

Φ

)
(τ) =

2
3Γ( 1

3 )

τ∫
1

s
−1
3 Φ (s)(

τ
2
3 − s

2
3

) 2
3

ds,

R
(
τ,Q, Ĩ1

)
= Q (τ,Φ (τ)) +

Ĩ1

5
,

Q (τ,Φ (τ)) =
sin Φ (τ)
3 + τ2 ,

where Φ (s) is the possibility that the female will live to age s, κ (τ) , P (τ,Φ (τ)) , and Q (τ,Φ (τ)) are
the variables added to account for females born before the oldest child-bearing women of a certain age
(s = 2) were born. The survival functions, R and r, measure the proportion of people who live to age τ.
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Clearly, the functions κ, P, Q, r and R are continuous and satisfy

sup
τ∈J
|κ(τ)| = sup

τ∈J

∣∣∣∣∣ τe−τ

4 + 2τ

∣∣∣∣∣ ≤ 1
4
,∣∣∣∣r (τ, P, I1) − r

(
τ, P, I1

)∣∣∣∣ ≤ ∣∣∣P − P
∣∣∣ +

1
323

∣∣∣I1 − I1

∣∣∣ ,
|P (τ,Φ1 (τ)) − P (τ,Φ2 (τ))| ≤

1
5
|Φ1 − Φ2| ,∣∣∣∣∣R (

τ,Q, Ĩ1

)
− R

(
τ,Q, Ĩ1

)∣∣∣∣∣ ≤ ∣∣∣Q − Q
∣∣∣ +

1
5

∣∣∣∣∣Ĩ1 − Ĩ1

∣∣∣∣∣ ,
|Q (τ,Φ1 (τ)) − Q (τ,Φ2 (τ))| ≤

1
4
|Φ1 − Φ2| .

Thus, 1ג = 1
4 , 2ג = 5ג = 1, 3ג = 1

323 , 4ג = 1
5 , 6ג = 1

5 and 7ג = 1
4 . Taking ‖Q‖ ≤ z0, then

P′ =
z0

5
, Q′ =

z0

4
, I′1 =

z0 × 324 × 412

60 × 511 × Γ(12)
e−(2)

5
3
(
2( 5

3 ) − 1
)12
, and Ĩ′1 =

z09
(
2

2
3 − 1

) 1
3

3Γ(1
3 )

.

Furthermore, the inequality produced by A5 changes into

1ג + 4ג2ג) + (7ג5ג z0 + 3ג
θ−

ρ
ϕ e

`(S θ)
(`−1)

(
S θ − 1

) ρ
ϕ

ρ`
ρ
ϕϕ

ρ
ϕ−1Γ

(
ρ

ϕ

) z0 + 6ג
S ξη

Γ (η + 1)
z0

=
1
4

+
9
20

z0 +
z0 × 412

60 × 511 × Γ(12)
e−(2)

5
3
(
2( 5

3 ) − 1
)12

+
z0

(
2

1
4 − 1

) 1
8

40Γ
(

1
8

) ≤ z0. (5.4)

Taking z0 = 2, we have

P′ =
2
5
, Q′ =

1
2
, I′1 =

324 × 412

30 × 511 × Γ(12)
e−(2)

5
3
(
2( 5

3 ) − 1
)12
, and Ĩ′1 =

18
(
2

2
3 − 1

) 1
3

3Γ( 1
3 )

.

Hence, Eq (5.4) satisfies

1
4

+
9

10
+

412

30 × 511 × Γ(12)
e−(2)

5
3
(
2( 5

3 ) − 1
)12

+

(
2

1
4 − 1

) 1
8

20Γ
(

1
8

) ≤ 2.

Therefore the assumptions A1–A5 of Theorem 2.4 are satisfied. Then, the problem given by (5.3) has a
solution on C([1, 2]).

6. Conclusions

In various research fields and engineering applications, problems involving the division of
biological populations arise frequently. Models on population biology have contributed to studies
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on the dynamics of resistance in bacteria, viruses, and microparasites that appear in the treated host
population and the individual treated host. Mixed Riemann-Liouville and Erdélyi-Kober fractional
operators that arise in BPD issues constituted the subject of this report. For such challenges, we
employed FP approaches to make sure that solutions existed. Additionally, a result on infectious
disorders has been reported. Through practical examples, we have also provided several illustrative
applications. In the future, we look forward to introducing the Caputo-Fabrizio fractional operators
with non-singular kernels, the Caputo-Hadamard fractional operators under nonlocal anti-periodic
integral boundary constraints, and the Langevin fractional operators with the p-Laplacian operators by
using the EKF integral operators in the biological system given by Eq (1.2) with a different visualization
of the variables Φ (s) , κ (τ) , P (τ,Φ (τ)) , and Q (τ,Φ (τ)). Finally, we plan to study the stability of the
current system and the rest of the proposed systems, as the perception of stability for such models is
still vague.
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