Citation: Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao. Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals[J]. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
[1] | M. M. Ali, A. R. Khan, Generalized integral Mercer's inequality and integral means, J. Inequal. Spec. Funct., 10 (2019), 60-76. |
[2] | E. Anjidani, M. R. Changalvaiy, Reverse Jensen-Mercer type operator inequalities, Electron. J. Linear Algebra, 31 (2016), 87-99. doi: 10.13001/1081-3810.3058 |
[3] | E. Anjidani, Jensen-Mercer operator inequalities involving superquadratic functions, Mediterr. J. Math., 18 (2018), 1660-5446. |
[4] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1-12. |
[5] | Z. Dahmani, L. Tabharit, On weighted Grüss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31-38. |
[6] | M. Z. Sarikaya, N. Alp, On Hermite-Hadamard-Fejér type integral inequalities for generalized convex functions via local fractional integrals, Open J. Math. Sci., 3 (2019), 273-284. doi: 10.30538/oms2019.0070 |
[7] | G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210-216. doi: 10.30538/oms2019.0064 |
[8] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192. |
[9] | G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. Appl., 14 (2017), 64-68. |
[10] | İ. Işcan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4 |
[11] | M. Kadakal, İ. Işcan, H. Kadakal, et al. On improvements of some integral inequalities, Researchgate, DOI: 10.13140/RG.2.2.15052.46724. |
[12] | M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra, 26 (2013), 742-753. |
[13] | M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra Appl., 456 (2014), 82-87. doi: 10.1016/j.laa.2012.12.011 |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[15] | V. S. Kiryakova, Generalized Fractional Calculus and Applications, Longman Sci and Technical, Harlow, Co-published with John Wiley, New York, 1994. |
[16] | Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266 |
[17] | K. Liu, J. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for Ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4 |
[18] | A. Matkovic, J. Pečarić, I. Perić, A variant of Jensens inequality of Mercers type for operators with applications, Linear Algebra Appl., 418 (2006), 551-564. doi: 10.1016/j.laa.2006.02.030 |
[19] | A. McD. Mercer, A variant of Jensens inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73. |
[20] | H. R. Moradi, S. Furuichi, Improvement And generalization of some Jensen-Mercer-type inequalities, arXiv:1905.01768. |
[21] | S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94. |
[22] | M. Niezgoda, A generalization of Mercers result on convex functions, Nonlinear Anal., 71 (2009), 2771-2779. doi: 10.1016/j.na.2009.01.120 |
[23] | H. Öğülmüs, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Researchgate, DOI: 10.13140/RG.2.2.30669.79844. |
[24] | D. S. Mitrinovic, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Springer Science & Business Media, 2013. |
[25] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049-1059. |