Research article

µ-extended fuzzy b-metric spaces and related fixed point results

  • Received: 01 February 2020 Accepted: 01 June 2020 Published: 15 June 2020
  • MSC : 47H10, 54H25

  • This paper introduces the notion of $\mu$-extended fuzzy $b$-metric space for extending the concept of fuzzy $b$-metric space and obtains an analogue of Banach fixed point result. Using functions $\alpha(x, y)$ and $\mu(x, y)$, the corresponding triangle inequality in $\mu$-extended fuzzy $b$-metric space is given as follows $ M( \upsilon,\omega,\alpha(\upsilon,\omega)s+\mu(\upsilon,\omega)t)\geq M(\upsilon,\nu,s)*M(\nu,\omega,t)\ \ \forall \upsilon,\nu,\omega \in X. $ An analogue of Banach fixed point result is established. Besides, an example is given to confirm validity of this theorem.

    Citation: Badshah-e-Rome, Muhammad Sarwar, Thabet Abdeljawad. µ-extended fuzzy b-metric spaces and related fixed point results[J]. AIMS Mathematics, 2020, 5(5): 5184-5192. doi: 10.3934/math.2020333

    Related Papers:

  • This paper introduces the notion of $\mu$-extended fuzzy $b$-metric space for extending the concept of fuzzy $b$-metric space and obtains an analogue of Banach fixed point result. Using functions $\alpha(x, y)$ and $\mu(x, y)$, the corresponding triangle inequality in $\mu$-extended fuzzy $b$-metric space is given as follows $ M( \upsilon,\omega,\alpha(\upsilon,\omega)s+\mu(\upsilon,\omega)t)\geq M(\upsilon,\nu,s)*M(\nu,\omega,t)\ \ \forall \upsilon,\nu,\omega \in X. $ An analogue of Banach fixed point result is established. Besides, an example is given to confirm validity of this theorem.


    加载中


    [1] T. Abdeljawad, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China, Math., 51 (2008), 1775-1786. doi: 10.1007/s11425-008-0068-1
    [2] T. Abdeljawad, F. Jarad, D. Baleanu, Existence and uniqueness theorem for a class of delay fractional differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507.
    [3] A. A. Kilbas, M. H. Srivastava, J. J. Tujillo, Theory and application of fractional differential equations, North Holand Mathematics Studies; Elsvier: Amsterdam, The Netherland, 2006.
    [4] G. bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393. doi: 10.1016/j.na.2005.10.017
    [5] B. S. Chaudury, N. Metiya, M. Postolache, A generalized weak contraction principle with applications coupled coincidence point problems, Fixed Point Theory Appl., 2013 (2013), 152.
    [6] L. B. Ciric, A generalization Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273.
    [7] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 5 (2008), 1861-1869.
    [8] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [9] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 5 (1975), 336-344.
    [10] R. Vasuki, P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets Syst., 3 (2003), 415-417.
    [11] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566-569. doi: 10.1016/0022-247X(81)90141-4
    [12] S. Nǎdǎban, Fuzzy b-Metric spaces, Int. J. Comput. Commun. Control., 2 (2016), 273-281.
    [13] F. Mehmood, R. A. Ali, C. Ionescu, et al. Extended fuzzy b-Metric spaces, J. Math. Anal., 8 (2017), 124-131.
    [14] B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313-334. doi: 10.2140/pjm.1960.10.313
    [15] V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245-252. doi: 10.1016/S0165-0114(00)00088-9
    [16] R. George, S. Radenović, K. P. Reshma, et al. Rectangular b-metric space and contraction principles, Nonlinear Sci. Appl., 6 (2015), 1005-1013.
    [17] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385-389. doi: 10.1016/0165-0114(88)90064-4
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3465) PDF downloads(364) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog