Citation: ShiLiang Wu, CuiXia Li. A special shift splitting iteration method for absolute value equation[J]. AIMS Mathematics, 2020, 5(5): 5171-5183. doi: 10.3934/math.2020332
[1] | J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear A., 52 (2004), 421-426. doi: 10.1080/0308108042000220686 |
[2] | O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 36 (2007), 43-53. doi: 10.1007/s10589-006-0395-5 |
[3] | O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359-367. doi: 10.1016/j.laa.2006.05.004 |
[4] | S. L. Wu, P. Guo, Modulus-based matrix splitting algorithms for the quasi-complementarity problems, Appl. Numer. Math., 132 (2018), 127-137. doi: 10.1016/j.apnum.2018.05.017 |
[5] | R. W. Cottle, J. S. Pang, R. E. Stone, The Linear Complementarity Problem, Academic, San Diego, 1992. |
[6] | J. Rohn, An algorithm for solving the absolute value equations, Electron. J. Linear Al., 18 (2009), 589-599. |
[7] | J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35-44. doi: 10.1007/s11590-012-0560-y |
[8] | M. A. Noor, J. Iqbal, E. Al-Said, Residual iterative method for solving absolute value equations, Abstr. Appl. Anal., 2012 (2012),1-9. |
[9] | D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191-2202. doi: 10.1007/s11590-014-0727-9 |
[10] | M. A. Noor, J. Iqbal, K. I. Noor, et al. On an iterative method for solving absolute value equations, Optim. Lett., 6 (2012), 1027-1033. doi: 10.1007/s11590-011-0332-0 |
[11] | O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), 101-108. doi: 10.1007/s11590-008-0094-5 |
[12] | O. L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett., 9 (2015), 1469-1474. doi: 10.1007/s11590-015-0893-4 |
[13] | A. Wang, Y. Cao, J. X. Chen, Modified Newton-type iteration methods for generalized absolute value equations, J. Optimiz. Theory App., 181 (2019), 216-230. doi: 10.1007/s10957-018-1439-6 |
[14] | Z. Z. Bai, J. F. Yin, Y. F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24 (2006), 539-552. |
[15] | M. Z. Zhu, G. F. Zhang, Z. Z. Liang, The nonlinear HSS-like iteration method for absolute value equations, arXiv.org:1403.7013v2. |
[16] | S. L. Wu, C. X. Li, The unique solution of the absolute value equations, Appl. Math. Lett., 76 (2018), 195-200. doi: 10.1016/j.aml.2017.08.012 |
[17] | S. L. Wu, T. Z. Huang, X. L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 228 (2009), 424-433. doi: 10.1016/j.cam.2008.10.006 |
[18] | Y. F. Ke, C. F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 311 (2017), 195-202. |
[19] | G. H. Golub, X. Wu, J. Y. Yuan, SOR-like methods for augmented systems, BIT., 41 (2001), 71-85. doi: 10.1023/A:1021965717530 |
[20] | P. Guo, S. L. Wu, C. X. Li, On the SOR-like iteration method for solving absolute value equations, Appl. Math. Lett., 97 (2019), 107-113. doi: 10.1016/j.aml.2019.03.033 |