Research article

Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras

  • Received: 27 September 2019 Accepted: 05 December 2019 Published: 09 January 2020
  • MSC : 03G25, 06F35, 08A72

  • In this article, we present the idea of quasi-coincidence of an $m$-polar fuzzy point with an $m$-polar fuzzy subset. By utilizing this new idea, we further introduce the notion of $m$-polar $(\alpha, \beta)$-fuzzy subalgebras in $BCK/BCI$-algebras which is a generalization of the idea of $(\alpha, \beta)$-bipolar fuzzy subalgebras in $BCK/BCI$-algebras. Some interesting results of the $BCK/BCI$-algebras in terms of $m$-polar $(\alpha, \beta)$-fuzzy subalgebras are given. By using $m$-polar $(\in, \in \vee q)$-fuzzy subalgebras, some interesting results are obtained. Conditions for an $m$-polar fuzzy set to be an $m$-polar $(q, \in \vee q)$-fuzzy subalgebra and an $m$-polar $(\in, \in \vee q)$-fuzzy subalgebra are provided. Characterizations of $m$-polar $(\in, \in \vee q)$-fuzzy subalgebras in $BCK/BCI$-algebras by using level cut subsets are explored.

    Citation: Anas Al-Masarwah, Abd Ghafur Ahmad. Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras[J]. AIMS Mathematics, 2020, 5(2): 1035-1049. doi: 10.3934/math.2020072

    Related Papers:

  • In this article, we present the idea of quasi-coincidence of an $m$-polar fuzzy point with an $m$-polar fuzzy subset. By utilizing this new idea, we further introduce the notion of $m$-polar $(\alpha, \beta)$-fuzzy subalgebras in $BCK/BCI$-algebras which is a generalization of the idea of $(\alpha, \beta)$-bipolar fuzzy subalgebras in $BCK/BCI$-algebras. Some interesting results of the $BCK/BCI$-algebras in terms of $m$-polar $(\alpha, \beta)$-fuzzy subalgebras are given. By using $m$-polar $(\in, \in \vee q)$-fuzzy subalgebras, some interesting results are obtained. Conditions for an $m$-polar fuzzy set to be an $m$-polar $(q, \in \vee q)$-fuzzy subalgebra and an $m$-polar $(\in, \in \vee q)$-fuzzy subalgebra are provided. Characterizations of $m$-polar $(\in, \in \vee q)$-fuzzy subalgebras in $BCK/BCI$-algebras by using level cut subsets are explored.


    加载中


    [1] Y. Imai, K. Iséki, On axiom systems of propositional calculi, Proc. Jpn. Acad. Ser. A Math. Sci., 42 (1966), 19-21.
    [2] K. Iséki, An algebra related with a propositional calculus, Proc. Jpn. Acad., 42 (1966), 26-29.
    [3] J. Meng, Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co.: Seoul, Korea, 1994.
    [4] Y. Huang, BCI-Algebra, Science Press: Beijing, China, 2006.
    [5] L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338-353.
    [6] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive and modeling and multiagent decision analysis, Proc. of IEEE conf., (1994), 305-309.
    [7] K. Hayat, T. Mahmood, B. Y. Cao, On bipolar anti fuzzy H-ideals in hemirings, Fuzzy Inf. Eng., 9 (2017), 1-19.
    [8] M. Zulfiqar, Some properties of n-dimensional $(\in_\gamma, \in_\gamma \vee q_\delta)$-fuzzy subalgebra in BRK-algebras, An. St. Univ. Ovidius Constanta, 24 (2016), 301-320.
    [9] A. Al-Masarwah, A. G. Ahmad, Doubt bipolar fuzzy subalgebras and ideals in BCK/BCI-algebras, J. Math. Anal., 9 (2018), 9-27.
    [10] A. Al-Masarwah, A. G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCIalgebras, Eur. J. Pure Appl. Math., 11 (2018), 652-670.
    [11] A. Al-Masarwah, A.G. Ahmad, Novel concepts of doubt bipolar fuzzy H-ideals of BCK/BCIalgebras, Int. J. Innov. Comput. Inf. Control, 14 (2018), 2025-2041.
    [12] A. Al-Masarwah, A.G. Ahmad, m-Polar (α, β)-fuzzy ideals in BCK/BCI-algebras, Symmetry 11 (2019), 44.
    [13] C. Jana, M. Pal, Generalized intuitionistic fuzzy ideals of BCK/BCI-algebras based on 3-valued logic and its computational study, Fuzzy Inf. Eng., 9 (2017), 455-478.
    [14] C. Jana, M. Pal, On (α, β)-Union-soft sets in BCK/BCI-algebras, Mathematics, 7 (2019), 252.
    [15] C. Jana, T. Senapati, K. P. Shum, et al., Bipolar fuzzy soft subalgebras and ideals of BCK/BCIalgebras based on bipolar fuzzy points, J. Intell. Fuzzy Syst., 37 (2019), 2785-2795.
    [16] C. Jana, M. Pal, Application of (α, β)-soft intersectional sets BCK/BCI-algebras, Int. J. Intell. Syst. Technol. Appl., 16 (2017), 269-288.
    [17] J. Chen, S. Li, S. Ma, et al., m-Polar fuzzy sets: An extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 8.
    [18] M. Akram, A. Farooq, K.P. Shum, On m-polar fuzzy lie subalgebras, Ital. J. Pure Appl. Math., 36 (2016), 445-454.
    [19] M. Akram, A. Farooq, m-polar fuzzy lie ideals of lie algebras, Quasigroups Relat. Syst., 24 (2016), 141- 150.
    [20] A. Farooq, G. Alia, M. Akram, On m-polar fuzzy groups, Int. J. Algebr. Stat., 5 (2016), 115-127.
    [21] A. Al-Masarwah, A.G. Ahmad, m-Polar fuzzy ideals of BCK/BCI-algebras, J. King Saud Univ. Sci., (2018), doi:10.1016/j.jksus.2018.10.002.
    [22] A. Al-Masarwah, A. G. Ahmad, On (complete) normality of m-pF subalgebras in BCK/BCIalgebras, AIMS Math., 4 (2019), 740-750.
    [23] M. kram, G. Ali, N. O. Alshehri, A new multi-attribute decision-making method based on m-polar fuzzy soft rough sets, Symmetry, 9 (2017), 271.
    [24] M. Abu Qamar, N. Hassan, Q-neutrosophic soft relation and its application in decision making, Entropy, 20 (2018), 172.
    [25] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
    [26] V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci., 158 (2004), 277-288.
    [27] P. M. Pu, Y. M. Liu, Fuzzy topology I: Neighourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
    [28] S. K. Bhakat, P. Das, $(\in, \in \vee q)$-fuzzy subgroups, Fuzzy Sets Syst., 80 (1996), 359-368.
    [29] W. A. Dudek, M. Shabir, M. Irfan Ali, (α, β)-fuzzy ideals of hemirings, Comput. Math. Appl., 58 (2009), 310-321.
    [30] A. Narayanan, T. Manikantan, $(\in,\in\vee q)$-fuzzy subnearrings and $(\in,\in\vee q)$-fuzzy ideals of nearrings, J. Appl. Math. Comput., 18 (2005), 419-430.
    [31] O. G. Xi, Fuzzy BCK-algebras, Math. Jpn., 36 (1991), 935-942.
    [32] Y. B. Jun, On (α, β)-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc., 42 (2005), 703-711.
    [33] G. Muhiuddin, A. M. Al-Roqi, Subalgebras of BCK/BCI-algebras based on (α, β)-type fuzzy sets, J. Comput. Anal. Appl., 18 (2015), 1057-1064.
    [34] C. Jana, T. Senapati, M. Pal, $(\in, \in \vee q)$-intuitionistic fuzzy BCI-subalgebras of a BCI-algebra, J. Intell. Fuzzy Syst., 31 (2016), 613-621.
    [35] C. Jana, M. Pal, A. B. Saeid, $(\in, \in \vee q)$-Bipolar fuzzy BCK/BCI-algebras, Missouri J. Math. Sci., 29 (2017), 139-160.
    [36] K. J. Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays. Math. Sci. Soc., 32 (2009), 361-373.
    [37] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Jpn., 23 (1978), 1-26.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3384) PDF downloads(415) Cited by(6)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog