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interesting results are obtained. Conditions for an m-polar fuzzy set to be an m-polar (q, ∈ ∨q)-fuzzy
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1. Introduction

BCK-algebras, one of the oldest branches of general algebras, first appeared in mathematical
sciences in 1966 by Imai and Iséki [1], which are applied to several areas, such as topology, group
theory, semigroups, graphs and functional analysis, etc. Such algebras generalize Boolean D-poset
(MV-algebras) as well as Boolean rings. In the same year, as an extension of BCK-algebras, Iséki [2]
introduced the idea of BCI-algebras. BCK/BCI-algebras are established from two distinct
approaches: Propositional calculi and set theory. Several results and properties of BCK/BCI-algebras
are discussed in the works [3, 4].

Fuzzy set theory, initially established by Zadeh [5] in 1965, was applied by several researchers
to generalize some of the essential ideas of algebraic structures. Fuzzy algebraic structures play a
prominent role in different domains in mathematics and other sciences such as theoretical physics,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020072


1036

topological spaces, real analysis, coding theory, set theory, logic, information sciences and the like.
In 1994, bipolar fuzzy (BF , for short) sets were developed by Zhang [6] and is a more platform that
extends the crisp (classical) sets and fuzzy sets. Hybrid models of fuzzy sets have been implemented in
several algebraic structures, such as hemirings [7], BRK-algebras [8] and BCK/BCI-algebras [9–16].
In many real life problems, multi-polar information plays a fundamental role in distinct areas of the
science, such as neurobiology and technology. Data sometimes comes from m components (m ≥
2), for example consider the following sentence “Harvard University Is a Good University”. The
degree of membership of this sentence may not be a real number in the standard interval [0, 1]. In fact,
Harvard University is a good university in several components: good in ranking, location, facilities and
education, etc. Any component may be a real number in the interval [0, 1]. If we have m components,
then the degree of membership of the fuzzy sentence is an element of [0, 1]m, that is, a m-tuple of real
number in [0, 1].

Based on these observations, Chen et al. [17] broadened the theory of BF sets to get the idea
of m-polar fuzzy (m-PF , for short) sets in 2014, and proved that BF sets and 2-PF sets are
cryptomorphic mathematical notions. In m-PF sets, the grades of membership functions Ŵ are
extended from the unit interval [0,1] into the cubic [0, 1]m. Recently, m-PF set theory was applied
to some algebraic structures such as lie algebras [18, 19] and groups [20]. In BCK/BCI-algebras, the
notion of m-PF subalgebras was first initiated in 2018 by Al-Masarwah and Ahmad [21]. After
that, in [22] they studied the normalizations of m-PF subalgebras in BCK/BCI-algebras. Various
applications of m-PF sets and other hybrid models of fuzzy sets in the real life-issues in the field of
decision making problems are studied in [23, 24].

The framework of the fuzzy subgroup, initially proposed by Rosenfeld [25] in 1971, is a
fundamental concept of fuzzy algebras. The notion of “belongingness” of a fuzzy point with a fuzzy
set was given by Murali [26]. Besides, the concept of “quasi-coincidence” of a fuzzy point with a
fuzzy set [27], played a fundamental role to construct distinct innovative types of fuzzy subgroups. In
the literature, Bhakat and Das [28] first generalized the notion of fuzzy subgroups to (α, β)-fuzzy
subgroups. They proposed the idea of (∈, ∈ ∨q)-fuzzy subgroups as a special case of (α, β)-fuzzy
subgroups. In this aspect, Dudek et al. [29] and Narayanan et al. [30] extended these results to
near-rings and hemirings. In BCK/BCIalgebras, Xi [31] introduced the idea of fuzzy subalgebras in
1991. Jun [32] presented the study of (α, β)-fuzzy subalgebras as a generalization of fuzzy
subalgebras. Further, Muhiuddin and Al-Roqi discussed more results of this concept in [33]. Jana et
al. [34] presented an (∈, ∈ ∨q)-intuitionistic fuzzy subalgebra in BCI-algebras. Also, Jana et al. [35]
established the idea of (∈, ∈ ∨q)-BF subalgebras in BCK/BCI-algebras. This concept is a
fundamental and useful generalization of Lee’s [36] BF subalgebras.

Inspired by the previous studies and by using m-PF sets and m-PF points, we present a new
idea called m-polar (α, β)-fuzzy subalgebras in BCK/BCI-algebras and we establish some interesting
characterization results. In particular, we introduce the concept of m-polar (∈, ∈ ∨q)-fuzzy subalgebras
and we give some related theorems. We provide conditions for an m-PF set to be an m-polar (q, ∈
∨q)-fuzzy subalgebra and an m-polar (∈, ∈ ∨q)-fuzzy subalgebra. We explore the characterizations of
m-polar (∈, ∈ ∨q)-fuzzy subalgebras in BCK/BCI-algebras by using level cut subsets. To show the
novelty of this model, some contributions of different authors toward generalized m-PF subalgebras
in BCK/BCI-algebras are analyzed in Table 1.
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Table 1. Contributions toward generalized m-PF subalgebras.

Authors Year Contributions

Rosenfeld [25] 1971 Introduction of fuzzy subgroups.
Bhakat and Das [28] 1996 Generalization of fuzzy subgroups.

Xi [31] 1991 Introduction of fuzzy subalgebras.
Jun [32] 2005 Generalization of fuzzy subalgebras.
Lee [36] 2009 Introduction of BF subalgebras.

Jana et al. [35] 2017 Generalization of BF subalgebras.
Al-Masarwah and Ahmad [21] 2018 Introduction of m-PF subalgebras.

Al-Masarwah and Ahmad This paper Generalization of m-PF subalgebras.

2. Preliminaries

In the current section, we recall the basic concepts of BCK/BCI-algebras which will be very helpful
in further study of the paper.

A structure (P, ∗) is called a BCI-algebra if P contains a constant 0 and satisfies the following
conditions: For all h, k, l ∈ P,

(I) (h ∗ (h ∗ k)) ∗ k = 0,

(II) ((h ∗ k) ∗ (h ∗ l)) ∗ (l ∗ k) = 0,

(III) h ∗ h = 0,

(IV) h ∗ k = 0 and k ∗ h = 0 imply h = k.

If a BCI-algebra (P, ∗) satisfies 0 ∗ h = 0, then P is said to be a BCK-algebra. In any BCK/BCI-
algebra (P, ∗), the following valid: For all h, k, l ∈ P,

(1) h ∗ 0 = h,

(2) (h ∗ k) ∗ l = (h ∗ l) ∗ k,

(3) h ∗ k ≤ h,

(4) (h ∗ k) ∗ l ≤ (h ∗ l) ∗ (k ∗ l),

(5) h ≤ k ⇒ h ∗ l ≤ k ∗ l, l ∗ k ≤ l ∗ h,

where h ≤ k ⇔ h ∗ k = 0.
A subset C , φ of a BCK/BCI-algebra (P, ∗) is a subalgebra of (P, ∗) if h ∗ k ∈ C, ∀h, k ∈ C.
Here we mentioned some of the related definitions and results which are directly used in our work.

For details we refer the researcher to the works [3, 4, 37] for more information regarding BCK/BCI-
algebras. From now on, let P denote a BCK/BCI-algebra unless otherwise specified.

Definition 2.1. [17] A function Ŵ : P → [0, 1]m is defined from P(, φ) to an m-tuple of real number
in [0, 1], is called an m-PF set. The membership degree of each element h ∈ P is denoted by

Ŵ(h) = (p1 ◦W(h), p2 ◦W(h), ..., pm ◦W(h))
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where p j ◦ W : [0, 1]m → [0, 1] is the j-th projection mapping. The smallest and largest values in
[0, 1]m are 0̂ = (0, 0, ..., 0) and 1̂ = (1, 1, ..., 1), respectively.

Definition 2.2. [21] An m-PF set Ŵ of P is called an m-PF subalgebra of P if for all h, k ∈ P,

Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k)},

i.e.,

p j ◦W(h ∗ k) ≥ inf{p j ◦W(h), p j ◦W(k)}

for all j = 1, 2, ...,m.

3. m-polar (α, β)-fuzzy subalgebras

In the current section, we propose the concept of m-polar (α, β)-fuzzy subalgebras, where α, β ∈ {∈
, q, ∈ ∨q, ∈ ∧q}, α ,∈ ∧q, and study some related properties.

An m-PF set Ŵ of P having the form

Ŵ(k) =

{
η̂ = (η1, η2, ..., ηm) ∈ (0, 1]m, if k = h
0̂ = (0, 0, ..., 0), if k , h

is called an m-PF point with support h and value η̂ = (η1, η2, ..., ηm) and is denoted by hη̂.
For an m-PF set Ŵ of P, we say that

(1) hη̂ is belong to Ŵ, denoted by hη̂ ∈ Ŵ, if Ŵ(h) ≥ η̂ i.e., p j ◦W(h) ≥ η j for each j = 1, 2, ...,m.

(2) hη̂ is quasi-coincident with Ŵ, denoted by hη̂qŴ, if Ŵ(h) + η̂ > 1̂ i.e., p j ◦W(h) + η j > 1 for
each j = 1, 2, ...,m.

(3) hη̂ is belong to Ŵ or hη̂ is quasi-coincident with Ŵ, denoted by hη̂ ∈ ∨qŴ, if hη̂ ∈ Ŵ or hη̂qŴ.

(4) hη̂ is belong to Ŵ and hη̂ is quasi-coincident with Ŵ, denoted by hη̂ ∈ ∧qŴ, if hη̂ ∈ Ŵ and
hη̂qŴ.

(5) hη̂αŴ if hη̂αŴ does not hold.

If C is a nonempty subset of P, then the m-polar characteristic function of C denoted and defined
by

χ̂C(h) =

 1̂, if h ∈ C
0̂, if h < C.

Clearly, χ̂C is an m-PF subset of P.

Definition 3.1. An m-PF set Ŵ of P is called an m-polar (α, β)-fuzzy subalgebra of P if it satisfies
the following condition:

hη̂αŴ, kζ̂αŴ ⇒ (h ∗ k)inf {̂η,̂ζ}βŴ

for all η̂, ζ̂ ∈ (0, 1]m and h, k ∈ P, where α ,∈ ∧q.
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In Definition 3.1 α ,∈ ∧q. To explain this, let Ŵ be an m-PF set of P such that Ŵ(h) ≤ 0̂.5
∀h ∈ P. Let h ∈ P be such that hη̂ ∈ ∧qŴ for η̂ ∈ (0, 1]m. Then, hη̂ ∈ Ŵ and hη̂qŴ i.e., Ŵ(h) ≥ η̂
and Ŵ(h) + η̂ > 1̂. It implies that 1̂ < Ŵ(h) + η̂ ≤ Ŵ(h) + Ŵ(h) = 2Ŵ(h), so Ŵ(h) > 0̂.5. This
means that {hη̂ | hη̂ ∈ qŴ} = φ.

Example 3.1. Consider a BCI-algebra P = {0, k, l, n} with the operation ∗ which is given in Table 2:

Table 2. Tabular representation of the binary operation ∗.

∗ 0 k l n
0 0 k l n
k k 0 n l
l l n 0 k
n n l k 0

Let Ŵ : P → [0, 1]3 be a 3-PF set defined by:

Ŵ(h) =


(0.8, 0.7, 0.6), if h = 0
(0.9, 0.8, 0.7), if h = k
(0.5, 0.4, 0.3), if h = l, n.

Then, Ŵ is a 3-polar (∈, ∈ ∨q)-fuzzy subalgebra of P.

For any m-PF set Ŵ of P. Consider the set Ŵ0̂ = {h ∈ P | Ŵ(h) > 0̂}.

Theorem 3.2. If Ŵ is a non-zero m-polar (∈, β)-fuzzy subalgebra of P, then Ŵ0̂ is a subalgebra of P,
where β ∈ {∈, q}.

Proof. Let Ŵ be a non-zero m-polar (∈, β)-fuzzy subalgebra of P and h, k ∈ P. We consider the
following:
(1) For (β =∈). Let h, k ∈ Ŵ0̂. Then, Ŵ(h) > 0̂ and Ŵ(k) > 0̂. Note that h

Ŵ(h) ∈ Ŵ and k
Ŵ(k) ∈ Ŵ.

If Ŵ(h ∗ k) = 0̂, then Ŵ(h ∗ k) = 0̂ < inf{Ŵ(h),Ŵ(k)}. Thus, (h ∗ k)inf{Ŵ(h),Ŵ(k)}∈Ŵ, a contradiction.

So Ŵ(h ∗ k) > 0̂, i.e., h ∗ k ∈ Ŵ0̂.

(2) For (β = q). Let h, k ∈ Ŵ0̂. Then, Ŵ(h) > 0̂ and Ŵ(k) > 0̂. If Ŵ(h ∗ k) = 0̂, then Ŵ(h ∗
k) + inf{Ŵ(h),Ŵ(k)} = inf{Ŵ(h),Ŵ(k)} ≤ 1̂. Thus, (h ∗ k)inf{Ŵ(h),Ŵ(k)}qŴ, a contradiction. So

Ŵ(h ∗ k) > 0̂, i.e., h ∗ k ∈ Ŵ0̂. Hence, in any case, we have Ŵ0̂ is a subalgebra of P. �

Theorem 3.3. If Ŵ is a non-zero m-polar (q, ∈)-fuzzy subalgebra of P, then Ŵ0̂ is a subalgebra of P.

Proof. Let h, k ∈ Ŵ0̂ for h, k ∈ P. Then, Ŵ(h) > 0̂ and Ŵ(k) > 0̂. It follows x̂1qŴ and ŷ1qŴ.

Since Ŵ is an m-polar (q, ∈)-fuzzy subalgebra of P, we have (h ∗ k)̂1 ∈ Ŵ. If Ŵ(h ∗ k) = 0̂ < 1̂, then
(h ∗ k)̂1∈Ŵ, a contradiction. So Ŵ(h ∗ k) > 0̂, i.e., h ∗ k ∈ Ŵ0̂ for h, k ∈ P. Hence, Ŵ0̂ is a subalgebra
of P. �

Theorem 3.4. If Ŵ is a non-zero m-polar (q, q)-fuzzy subalgebra of P, then Ŵ0̂ is a subalgebra of P.
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Proof. Let h, k ∈ Ŵ0̂ for h, k ∈ P. Then, Ŵ(h) > 0̂ and Ŵ(k) > 0̂. Thus, Ŵ(h) + 1̂ > 1̂ and
Ŵ(k) + 1̂ > 1̂. It follows x̂1qŴ and ŷ1qŴ. If Ŵ(h ∗ k) = 0̂, then Ŵ(h ∗ k) + 1̂ = 0̂ + 1̂ = 1̂, and so
(h ∗ k)̂1qŴ. This is impossible, and hence Ŵ(h ∗ k) > 0̂ i.e., h ∗ k ∈ Ŵ0̂ for h, k ∈ P. Thus, Ŵ0̂ is a
subalgebra of P. �

In the following theorem, we give characterizations of an m-polar (∈, ∈ ∨q)-fuzzy subalgebra.

Theorem 3.5. For an m-PF set Ŵ of P, the conditions (J) and (H) are equivalent, where

(J) hη̂ ∈ Ŵ, kζ̂ ∈ Ŵ ⇒ (h ∗ k)inf {̂η,̂ζ} ∈ ∨qŴ,

(H) Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5}

for all h, k ∈ P and η̂, ζ̂ ∈ (0, 1]m.

Proof. (J) ⇒ (H). Assume that (H) does not valid, i.e., there exist h, k ∈ P such that Ŵ(h ∗ k) <
inf{Ŵ(h),Ŵ(k), 0̂.5}. Then, Ŵ(h ∗ k) < η̂ ≤ inf{Ŵ(h), Ŵ(k), 0̂.5} for some η̂ ∈ (0, 1]m. Thus,
hη̂ ∈ Ŵ and yη̂ ∈ Ŵ, but (h ∗ k)̂η∈ ∨qŴ, a contradiction. Thus, Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5} for
all h, k ∈ P.

(H) ⇒ (J). Let hη̂ ∈ Ŵ, kζ̂ ∈ Ŵ. Then, Ŵ(h) ≥ η̂ and Ŵ(k) ≥ ζ̂. If (h ∗ k)inf {̂η,̂ζ} ∈ Ŵ, then (J)

holds. If (h ∗ k)inf {̂η,̂ζ}∈Ŵ, then Ŵ(h ∗ k) < inf {̂η, ζ̂}. Since

Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5}
≥ inf {̂η, ζ̂, 0̂.5}.

It implies that Ŵ(h ∗ k) ≥ 0̂.5 and inf {̂η, ζ̂} > 0̂.5. Hence, Ŵ(h ∗ k) + inf {̂η, ζ̂} > 0̂.5 + 0̂.5 = 1̂, implies
(h ∗ k)inf {̂η,̂ζ}qŴ. Thus, (h ∗ k)inf {̂η,̂ζ} ∈ ∨qŴ. �

Corollary 3.6. An m-PF set Ŵ of P is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P if it satisfies the
condition (H).

Theorem 3.7. An m-PF set Ŵ of P is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P if and only if
Ŵη̂ = {h ∈ P | Ŵ(h) ≥ η̂} is a subalgebra of P for all η̂ ∈ (0, 0.5]m.

Proof. Let Ŵ be an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P and let h, k ∈ Ŵη̂ for η̂ ∈ (0, 0.5]m. Then,

Ŵ(h) ≥ η̂ and Ŵ(k) ≥ η̂.

Thus, we have

Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5}
≥ inf {̂η, η̂, 0̂.5}
= inf {̂η, 0̂.5}
= η̂,

that is, Ŵ(h ∗ k) ≥ η̂, which implies, h ∗ k ∈ Ŵη̂. Hence, Ŵη̂ is a subalgebra of P.

AIMS Mathematics Volume 5, Issue 2, 1035–1049.



1041

Conversely, assume that Ŵη̂ is a subalgebra of P for all η̂ ∈ (0, 0.5]m. Suppose h, k ∈ P such that

Ŵ(h ∗ k) < inf{Ŵ(h),Ŵ(k), 0̂.5}.

Select ψ̂ ∈ (0, 0.5]m such that

Ŵ(h ∗ k) < ψ̂ ≤ inf{Ŵ(h),Ŵ(k), 0̂.5}.

Then, xψ̂ ∈ Ŵ, yψ̂ ∈ Ŵ, but (h ∗ k)ψ̂∈ ∨qŴ. Which is a contradiction. Thus,
Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5} for all h, k ∈ P. Hence, Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra
of P. �

In the following theorem, we give conditions for an m-PF set to be an m-polar (q, ∈ ∨q)-fuzzy
subalgebra.

Theorem 3.8. Let C be a subalgebra of P and let Ŵ be an m-PF subset of P such that

(1) Ŵ(h) ≥ 0̂.5, for all h ∈ C.

(2) Ŵ(h) = 0̂, for all h < C,

Then, Ŵ is an m-polar (q, ∈ ∨q)-fuzzy subalgebra of P.

Proof. Assume C is a subalgebra ofP, h, k ∈ P and η̂, ζ̂ ∈ (0, 1]m. If hη̂qŴ and kζ̂qŴ, then Ŵ(h)+η̂ >

1̂ and Ŵ(k)+ζ̂ > 1̂. Thus, h, k ∈ C and so h∗k ∈ C because if not, then h < C or k < C. Thus, Ŵ(h) = 0̂
or Ŵ(k) = 0̂, and so η̂ > 1̂ or ζ̂ > 1̂. This is a contradiction. If inf {̂η, ζ̂} ≤ 0̂.5, then

Ŵ(h ∗ k) ≥ 0̂.5 ≥ inf {̂η, ζ̂}.

Hence, (h ∗ k)inf {̂η,̂ζ} ∈ Ŵ. If inf {̂η, ζ̂} > 0̂.5, then

Ŵ(h ∗ k) + inf {̂η, ζ̂} > 0̂.5 + 0̂.5 = 1̂

and so (h∗k)inf {̂η,̂ζ}qŴ. Thus, (h∗k)inf {̂η,̂ζ} ∈ ∨qŴ. Hence, Ŵ is an m-polar (q, ∈ ∨q)-fuzzy subalgebra
of P.

�

Corollary 3.9. Let φ , C ⊆ X and χ̂C be the m-polar characteristic function of C. Then, C is a
subalgebra of P if and only if χ̂C is an m-polar (α, ∈ ∨q)-fuzzy subalgebra of P, where α ∈ {∈, q}.

We consider a relation between an m-polar (q, ∈ ∨q)-fuzzy subalgebra and an m-polar (∈, ∈ ∨q)-
fuzzy subalgebra.

Theorem 3.10. Every m-polar (q, ∈ ∨q)-fuzzy subalgebra of P is an m-polar (∈, ∈ ∨q)-fuzzy
subalgebra of P.

Proof. Let Ŵ be an m-polar (q, ∈ ∨q)-fuzzy subalgebra of P. Let h, k ∈ P be such that hη̂, kζ̂ ∈ Ŵ for
η̂, ζ̂ ∈ (0, 1]m. Then,

Ŵ(h) ≥ η̂ and Ŵ(k) ≥ ζ̂.
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Suppose that (h ∗ k)inf {̂η,̂ζ}∈ ∨qŴ. Then,

Ŵ(h ∗ k) < inf {̂η, ζ̂} (3.1)

and
Ŵ(h ∗ k) + inf {̂η, ζ̂} ≤ 1̂. (3.2)

From Eqs (3.1) and (3.2), we get
Ŵ(h ∗ k) < 0̂.5. (3.3)

Combining Eqs (3.1) and (3.3), we have

Ŵ(h ∗ k) < inf {̂η, ζ̂, 0̂.5}.

Thus,

1̂ − Ŵ(h ∗ k) > 1̂ − inf {̂η, ζ̂, 0̂.5}
= sup{1 − η̂, 1 − ζ̂, 0̂.5}
≥ sup{1 − Ŵ(h), 1 − Ŵ(k), 0̂.5}.

Choose ψ̂ ∈ (0, 1]m such that 1̂ − Ŵ(h ∗ k) ≥ ψ̂ > sup{1 − Ŵ(h), 1 − Ŵ(k), 0̂.5}. It follows that
Ŵ(h) + ψ̂ > 1̂,Ŵ(k) + ψ̂ > 1̂, and Ŵ(h ∗ k) + ψ̂ ≤ 1̂. Thus, xψ̂qŴ, yψ̂qŴ, but (h ∗ k)ψ̂∈ ∨qŴ, a
contradiction. Hence, Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P. �

Remark 3.11. The converse of Theorem 3.10 is not true in general. For example, a 3-polar (∈, ∈ ∨q)-
fuzzy subalgebra Ŵ of P in Example 3.1 is not a 3-polar (q, ∈ ∨q)-fuzzy subalgebra of P, since

k(0.41,0.42,.43)qŴ and l(0.77,0.78,.79)qŴ,

but
(k ∗ l)inf{(0.41,0.42,.43),(0.77,0.78,.79)} = n(0.41,0.42,.43)∈ ∨qŴ.

The following corollary follows from Theorem 3.8 and Theorem 3.10.

Corollary 3.12. For a subalgebra C of P, let Ŵ be an m-PF subset of P satisfying conditions (1),
and (2) of Theorem 3.8. Then, Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P.

We give a condition for an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P to be an m-polar (q, ∈ ∨q)-fuzzy
subalgebra of P.

Theorem 3.13. Let Ŵ be an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P and any m-PF point has the
value η̂ ∈ (0, 0.5]m. Then, Ŵ is an m-polar (q, ∈ ∨q)-fuzzy subalgebra of P.

Proof. Let Ŵ be an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P. For h, k ∈ P, let η̂, ζ̂ ∈ (0, 0.5]m be such
that hη̂qŴ and kζ̂qŴ. Then, Ŵ(h) > 1̂− η̂ ≥ η̂ and Ŵ(k) > 1̂− ζ̂ ≥ ζ̂, i.e., hη̂ ∈ Ŵ and kζ̂ ∈ Ŵ. Since

Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P, it implies that (h ∗ k)inf {̂η,̂ζ} ∈ ∨qŴ. Consequently,

Ŵ is an m-polar (q, ∈ ∨q)-fuzzy subalgebra of P. �
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Theorem 3.14. Both m-polar (∈, ∈)-fuzzy subalgebra and m-polar (∈ ∨q, ∈ ∨q)-fuzzy subalgebra of P
are an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P.

Proof. Obviously, an m-polar (∈, ∈)-fuzzy subalgebra of P is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of
P. Now, let Ŵ be an m-polar (∈ ∨q, ∈ ∨q)-fuzzy subalgebra of P. For any h, k ∈ P, let η̂, ζ̂ ∈ (0, 1]m be
such that hη̂ ∈ Ŵ and kζ̂ ∈ Ŵ. Then, hη̂ ∈ ∨qŴ and kζ̂ ∈ ∨qŴ, it follows that (h ∗ k)inf {̂η,̂ζ} ∈ ∨qŴ.

Thus, Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P. �

Remark 3.15. The converse of Theorem 3.14 is not true in general. For example, a 3-polar (∈, ∈ ∨q)-
fuzzy subalgebra Ŵ of P in Example 3.1 is not a 3-polar (∈ ∨q, ∈ ∨q)-fuzzy subalgebra of P, since

k(0.5,0.52,.53) ∈ ∨qŴ and n(0.8,0.82,.83) ∈ ∨qŴ,

but
(k ∗ n)inf{(0.50,0.52,.53),(0.80,0.82,.83)} = l(0.50,0.52,.53)∈ ∨qŴ.

Also, it is not a 3-polar (∈, ∈)-fuzzy subalgebra of P, since

k(0.62,0.63,.64) ∈ Ŵ and k(0.66,0.67,.68) ∈ Ŵ,

but
(k ∗ k)inf{(0.62,0.63,.64),(0.66,0.67,.68)} = 0(0.62,0.63,.64)∈Ŵ.

We give a condition for an m-polar (∈, ∈ ∨q)-fuzzy subalgebra to be an m-polar (∈, ∈)-fuzzy
subalgebra.

Theorem 3.16. Let Ŵ be an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P such that Ŵ(h) < 0̂.5 for all
h ∈ P. Then, Ŵ is an m-polar (∈, ∈)-fuzzy subalgebra of P.

Proof. Let hη̂ ∈ Ŵ and kζ̂ ∈ Ŵ for h, k ∈ P and η̂, ζ̂ ∈ (0, 1]m. Then, Ŵ(h) ≥ η̂ and Ŵ(k) ≥ ζ̂.

Since Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P, by using condition (H) in Theorem 3.5,
we conclude that Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5}. Since Ŵ(h) < 0̂.5 for all h ∈ P, then Ŵ(h ∗
k) ≥ inf{Ŵ(h),Ŵ(k) ≥ inf {̂η, ζ̂}. Therefore, (h ∗ k)inf {̂η,̂ζ} ∈ Ŵ. Hence, Ŵ is an m-polar (∈, ∈)-fuzzy
subalgebra of P. �

In the following figure, we summarize and display the relations between some types of m-polar
(α, β)-fuzzy subalgebras in where α, β ∈ {∈, q, ∈ ∨q}, β < q.

     

 

 

 

   

  

 

m-polar (      )-fuzzy subalgebras 
 

 

m-polar (   )-fuzzy subalgebras 
 

 

m-polar (      )-fuzzy subalgebras 
 

 

m-polar (         )-fuzzy subalgebras 
 

Figure 1. Some relations in this study.
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Theorem 3.17. Let {Ŵ j} j∈I be a family of m-polar (∈, ∈ ∨q)-fuzzy subalgebras of P. Then, the
intersection, denoted by ∩ j∈IŴ j, of {Ŵ j} j∈I is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P.

Proof. Let {Ŵ j} j∈I be a family of m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P and h, k ∈ P. Then, Ŵ j(h ∗
k) ≥ inf{Ŵ j(h),Ŵ j(k), 0̂.5}∀ j ∈ I. Thus,(

∩ j∈I Ŵ j
)
(h ∗ k) = ∩ j∈IŴ j(h ∗ k)

≥ ∩ j∈I
(

inf{Ŵ j(h),Ŵ j(k), 0̂.5}
)

= inf{
(
∩ j∈I Ŵ j

)
(h),

(
∩ j∈I Ŵ j

)
(k), 0̂.5}.

Therefore,
(
∩ j∈I Ŵ j

)
(h ∗ k) ≥ inf{

(
∩ j∈I Ŵ j

)
(h),

(
∩ j∈I Ŵ j

)
(k), 0̂.5}. Hence, ∩ j∈IŴ j is an m-polar

(∈, ∈ ∨q)-fuzzy subalgebra of P. �

The following example shows that the union of two m-polar (∈, ∈ ∨q)-fuzzy subalgebras of P may
not be an m-polar (∈, ∈ ∨q)-fuzzy subalgebras of P.

Example 3.2. Let P = {0, k, l, n} be a BCI-algebra with the operation ∗ which is given in Example 3.1,
and let Ŵ : P → [0, 1]m be an m-PF set defined by:

Ŵ(h) =


(0.6, ..., 0.6), if h = 0
(0.7, ..., 0.7), if h = k
(0.3, ..., 0.3), if h = l, n.

Then,

Ŵη̂ =

{
P, if η̂ ∈ (0, 0.3]m

{0, k}, if η̂ ∈ (0.3, 0.4]m.

Since P and {0, k} are subalgebras of P, Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebras of P by Theorem
3.7. Let F̂ : P → [0, 1]m be an m-PF set defined by:

F̂ (h) =


(0.4, ..., 0.4), if h = 0
(0.3, ..., 0.3), if h = k, n
(0.5, ..., 0.5), if h = l.

Then,

F̂η̂ =

{
P, if η̂ ∈ (0, 0.3]m

{0, l}, if η̂ ∈ (0.3, 0.4]m.

Since P and {0, l} are subalgebras of P, F̂ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebras of P by Theorem
3.7. The union Ŵ ∪ F̂ of Ŵ and F̂ is given by:

(Ŵ ∪ F̂ )(h) =


(0.6, ..., 0.6), if h = 0
(0.7, ..., 0.7), if h = k
(0.5, ..., 0.5), if h = l
(0.3, ..., 0.3), if h = n.

Hence,

(Ŵ ∪ F̂ )̂η =

{
P, if η̂ ∈ (0, 0.3]m

{0, k, l}, if η̂ ∈ (0.3, 0.4]m.

AIMS Mathematics Volume 5, Issue 2, 1035–1049.



1045

Since {0, k, l} is not a subalgebra of P, it follows from Theorem 3.7 that Ŵ ∪ F̂ is not an m-polar
(∈, ∈ ∨q)-fuzzy subalgebra of P.

For any m-PF set Ŵ of P and η̂ ∈ (0, 1]m, we denote

〈Ŵ〉̂η = {h ∈ P | hη̂qŴ},

and

[Ŵ]̂η = {h ∈ P | hη̂ ∈ ∨qŴ}.

The sets 〈Ŵ〉̂η and [Ŵ]̂η are called q-level cut subset and ∈ ∨q-level cut subset of Ŵ, respectively.
It is clear that

[Ŵ]̂η = 〈Ŵ〉̂η ∪ Ŵη̂.

In the following two theorems, we discuss the relation between crisp subalgebras and m-polar (∈, ∈
∨q)-fuzzy subalgebras of P through level cut subsets.

Theorem 3.18. An m-PF set Ŵ of P is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P if and only if
〈Ŵ〉̂η , φ is a subalgebra of P for all η̂ ∈ (0.5, 1]m.

Proof. Assume Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P. Let h, k ∈ 〈Ŵ〉̂η. Then,

hη̂qŴ and yη̂qŴ.

This implies that

Ŵ(h) + η̂ > 1̂ , Ŵ(k) + η̂ > 1̂
Ŵ(h) > 1̂ − η̂ , Ŵ(k) > 1̂ − η̂.

By hypothesis

Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5}
> inf {̂1 − η̂, 1̂ − η̂, 0̂.5}
= inf {̂1 − η̂, 0̂.5}
= 1̂ − η̂.

Thus, Ŵ(h ∗ k) + η̂ > 1̂, implies (h ∗ k)̂ηqŴ, i.e., h ∗ k ∈ 〈Ŵ〉̂η. Therefore, 〈Ŵ〉̂η is a subalgebra of P.
Conversely, suppose 〈Ŵ〉̂η is a subalgebra of P for all η̂ ∈ (0.5, 1]m. Let h, k ∈ P such that

Ŵ(h ∗ k) < inf{Ŵ(h),Ŵ(k), 0̂.5}.

Then,
1̂ − inf{Ŵ(h),Ŵ(k), 0̂.5} < 1̂ − Ŵ(h ∗ k).

This implies
sup{̂1 − Ŵ(h), 1̂ − Ŵ(k), 0̂.5} < 1̂ − Ŵ(h ∗ k).

Select some η̂ ∈ (0.5, 1]m such that

sup{̂1 − Ŵ(h), 1̂ − Ŵ(k), 0̂.5} < η̂ ≤ 1̂ − Ŵ(h ∗ k).
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Then, Ŵ(h) + η̂ > 1̂, Ŵ(k) + η̂ > 1̂ and Ŵ(h ∗ k) + η̂ < 1̂. Thus, hη̂qŴ, yη̂qŴ, but (h ∗ k)̂ηqŴ,

i.e., h, k ∈ 〈Ŵ〉̂η, but h ∗ k < 〈Ŵ〉̂η, a contradiction. Thus, Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5} for all
h, k ∈ P. This shows that Ŵ is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P. �

Theorem 3.19. An m-PF set Ŵ of P is an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P if and only if
[Ŵ]̂η , φ is a subalgebra of P for all η̂ ∈ (0, 1]m.

Proof. Let Ŵ be an m-polar (∈, ∈ ∨q)-fuzzy subalgebra of P and η̂ ∈ (0, 1]m. Let h, k ∈ [Ŵ]̂η, so we
have

hη̂, kη̂ ∈ ∨qŴ,

that is
Ŵ(h) ≥ η̂ or Ŵ(h) + η̂ ≥ 1̂ (3.4)

and
Ŵ(k) ≥ η̂ or Ŵ(k) + η̂ ≥ 1̂. (3.5)

Case (1). If η̂ ∈ (0, 0.5]m, then 1̂ − η̂ ≥ 0̂.5 ≥ η̂. It implies from (3.4) and (3.5) that

Ŵ(h) ≥ η̂ and Ŵ(k) ≥ η̂.

By hypothesis

Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5}
≥ inf {̂η, η̂, 0̂.5}
= inf {̂η, 0̂.5}
= η̂.

Hence, (h ∗ k)̂η ∈ Ŵ.

Case (2). If η̂ ∈ (0.5, 1]m, then 1̂ − η̂ < 0̂.5 < η̂. It implies from (3.4) and (3.5) that

Ŵ(h) > 1̂ − η̂ and Ŵ(k) > 1̂ − η̂.

By hypothesis

Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5}
≥ inf {̂1 − η̂, 1̂ − η̂, 0̂.5}
= inf {̂1 − η̂, 0̂.5}
= 1̂ − η̂.

Hence, (h ∗ k)̂ηqŴ. Thus, (h ∗ k)̂η ∨ qŴ, i.e., (h ∗ k) ∈ [Ŵ]̂η. Therefore, [Ŵ]̂η is a subalgebra of P.
Conversely, Suppose that [Ŵ]̂η is a subalgebra of P for all η̂ ∈ (0, 1]m. Assume h, k ∈ P such that

Ŵ(h ∗ k) < inf{Ŵ(h),Ŵ(k), 0̂.5}.

Select η̂ ∈ (0, 1]m such that

Ŵ(h ∗ k) < η̂ ≤ inf{Ŵ(h),Ŵ(k), 0̂.5}.

Then, hη̂ ∈ Ŵ, kη̂ ∈ Ŵ, but (h ∗ k)̂η∈ ∨qŴ. Since [Ŵ]̂η is a subalgebra of P, we have h ∗ k ∈ [Ŵ]̂η,
a contradiction. Hence, Ŵ(h ∗ k) ≥ inf{Ŵ(h),Ŵ(k), 0̂.5} for all h, k ∈ P. Thus, Ŵ is an m-polar
(∈, ∈ ∨q)-fuzzy subalgebra of P. �
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4. Conclusions

The objective of this article is to establish a new concept of m-PF subalgebras in
BCK/BCI-algebras P, called m-polar (α, β)-fuzzy subalgebras, by using the notions of m-PF sets
and m-PF points. As a special case of m-polar (α, β)-fuzzy subalgebras, we have presented the idea
of m-polar (∈, ∈ ∨q)-fuzzy subalgebras, and investigated several related properties. Then, we have
provided conditions for an m-PF set to be an m-polar (q, ∈ ∨q)-fuzzy subalgebra and an m-polar
(∈, ∈ ∨q)-fuzzy subalgebra. Finally, we have discussed the relationship between crisp subalgebras and
m-polar (∈, ∈ ∨q)-fuzzy subalgebras in P through level cut subsets. In our further research, we will
focus on adopting this approach to some more algebraic structures, such as KU-algebras,
UP-algebras, semigroups, KU-semigroups and Hemirings, and to some more complicated
applications from the domains of information systems and computer sciences.
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