Research article

Lie symmetry analysis, conservation laws and diverse solutions of a new extended (2+1)-dimensional Ito equation

  • Received: 04 September 2023 Revised: 30 September 2023 Accepted: 10 October 2023 Published: 02 November 2023
  • MSC : 76M60

  • In this paper, a new class of extended (2+1)-dimensional Ito equations is investigated for its group invariant solutions. The Lie symmetry method is employed to transform the nonlinear Ito equation into an ordinary differential equation. The general solution of the solvable linear differential equation with different parameters is obtained, and the plot of the solvable linear differential equation is given. A power series solution for the equation is then derived. Furthermore, a conservation law for the equation is constructed by utilizing a new Ibragimov conservation theorem.

    Citation: Ziying Qi, Lianzhong Li. Lie symmetry analysis, conservation laws and diverse solutions of a new extended (2+1)-dimensional Ito equation[J]. AIMS Mathematics, 2023, 8(12): 29797-29816. doi: 10.3934/math.20231524

    Related Papers:

  • In this paper, a new class of extended (2+1)-dimensional Ito equations is investigated for its group invariant solutions. The Lie symmetry method is employed to transform the nonlinear Ito equation into an ordinary differential equation. The general solution of the solvable linear differential equation with different parameters is obtained, and the plot of the solvable linear differential equation is given. A power series solution for the equation is then derived. Furthermore, a conservation law for the equation is constructed by utilizing a new Ibragimov conservation theorem.



    加载中


    [1] F. Oliveri, Lie symmetries of differential equations: classical results and recent contributions, Symmetry, 2 (2010), 658–706. https://doi.org/10.3390/sym2020658 doi: 10.3390/sym2020658
    [2] R. K. Gazizov, N. H. Ibragimov, Lie symmetry analysis of differential equations in finance, Nonlinear Dynam., 17 (1998), 387–407. https://doi.org/10.1023/A:1008304132308 doi: 10.1023/A:1008304132308
    [3] A. Paliathanasis, M. Tsamparlis, Lie point symmetries of a general class of PDEs: The heat equation, J. Geom. Phys., 62 (2012), 2443–2456. https://doi.org/10.1016/j.geomphys.2012.09.004 doi: 10.1016/j.geomphys.2012.09.004
    [4] M. Nadjafikhah, V. Shirvani-Sh, Lie symmetries and conservation laws of the Hirota–Ramani equation, Commun. Nonlinear Sci., 17 (2012), 4064–4073. https://doi.org/10.1016/j.cnsns.2012.02.032 doi: 10.1016/j.cnsns.2012.02.032
    [5] Z. L. Zhao, Conservation laws and nonlocally related systems of the Hunter–Saxton equation for liquid crystal, Anal. Math. Phys., 9 (2019), 2311–2327. https://doi.org/10.1007/s13324-019-00337-3 doi: 10.1007/s13324-019-00337-3
    [6] M. Marin, Harmonic vibrations in thermoelasticity of microstretch materials, J. Vib. Acoust., 2 (2010), 044501. https://doi.org/10.1115/1.4000971 doi: 10.1115/1.4000971
    [7] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of ageneralized higher-order beam equation, Royal Soc., 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [8] M. Marin, D. Baleanu, On vibrations in thermoelasticity without energy dissipation for micropolar bodies, Bound. Value Probl., 2016 (2016), 1–19. https://doi.org/10.1186/s13661-016-0620-9 doi: 10.1186/s13661-016-0620-9
    [9] H. Liu, J. Li, Q. Zhang, Lie symmetry analysis and exact explicit solutions for general Burgers' equation, J. Comput. Appl. Math., 228 (2009), 1–9. https://doi.org/10.1016/j.cam.2008.06.009 doi: 10.1016/j.cam.2008.06.009
    [10] C. Song, Y. Liu, Extended homogeneous balance conditions in the sub-equation method, J. Appl. Anal., 28 (2022), 165–179. https://doi.org/10.1515/jaa-2021-2068 doi: 10.1515/jaa-2021-2068
    [11] Y. Yang, T. Suzuki, X. Cheng, Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan- Porsezian-Daniel equation, Appl. Math. Lett., 99 (2020), 105998. https://doi.org/10.1016/j.aml.2019.105998 doi: 10.1016/j.aml.2019.105998
    [12] N. H. Ibragimov, A. H. Kara, F. M. Mahomed, Lie–Bäcklund and Noether symmetries with applications, Nonlinear Dynam., 15 (1998), 115–136. https://doi.org/10.1023/A:1008240112483 doi: 10.1023/A:1008240112483
    [13] S. Sahoo, S. S. Ray, Lie symmetry analysis and exact solutions of (3+ 1) dimensional Yu–Toda–Sasa–Fukuyama equation in mathematical physics, Comput. Math. Appl., 73 (2017), 253–260. https://doi.org/10.1016/j.camwa.2016.11.016 doi: 10.1016/j.camwa.2016.11.016
    [14] Y. Zhang, Z. Zhao, Lie symmetry analysis, Lie-Bäcklund symmetries, explicit solutions, and conservation laws of Drinfeld-Sokolov-Wilson system, Bound. Value Probl., 154 (2017). https://doi.org/10.1186/s13661-017-0885-7 doi: 10.1186/s13661-017-0885-7
    [15] W. Abdul-Majid, Multiple-soliton solutions for the generalized (1+1)-dimensional and the generalized (2+1)-dimensional Ito equations, Appl. Math. Comput., 202 (2008), 840–849. https://doi.org/10.1016/j.amc.2008.03.029 doi: 10.1016/j.amc.2008.03.029
    [16] S. Kumar, S. Rani, Lie symmetry analysis, group-invariant solutions and dynamics of solitons to the (2+ 1)-dimensional Bogoyavlenskii–Schieff equation, Pramana J. Phys., 95 (2021), 51. https://doi.org/10.1007/s12043-021-02082-4 doi: 10.1007/s12043-021-02082-4
    [17] G. Wang, Y. Liu, Symmetry analysis for a seventh-order generalized KdV equation and its fractional version in fluid mechanics, Fractals, 28 (2020), 2050044. https://doi.org/10.1142/S0218348X20500449 doi: 10.1142/S0218348X20500449
    [18] W. X. Ma, J. Li, C. M. Khalique, A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+ 1)-dimensions, Complexity, 2018 (2018), 1–7. https://doi.org/10.1155/2018/9059858 doi: 10.1155/2018/9059858
    [19] D. L. Li, J. X. Zhao, New exact solutions to the (2+ 1)-dimensional Ito equation: Extended homoclinic test technique, Appl. Math. Comput., 215 (2009), 1968–1974. https://doi.org/10.1016/j.amc.2009.07.058 doi: 10.1016/j.amc.2009.07.058
    [20] S. F. Tian, H. Q. Zhang, Riemann theta functions periodic wave solutions and rational characteristics for the (1+ 1)-dimensional and (2+ 1)-dimensional Ito equation, Chaos, Soliton. Fract., 47 (2013), 27–41. https://doi.org/10.1016/j.chaos.2012.12.004 doi: 10.1016/j.chaos.2012.12.004
    [21] L. Zou, Z. B. Yu, S. F. Tian Lump solutions with interaction phenomena in the (2+ 1)-dimensional Ito equation, Mod. Phys. Lett. B, 32 (2018), 1850104. https://doi.org/10.1142/S021798491850104X doi: 10.1142/S021798491850104X
    [22] H. C. Ma, H. F. Wu, W. X. Ma, Localized interaction solutions of the (2+ 1)-dimensional Ito Equation, Opt. Quant. Electron., 53 (2021), 303. https://doi.org/10.1007/s11082-021-02909-9 doi: 10.1007/s11082-021-02909-9
    [23] M. Ito, An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders, J. Phys. Soc. Jpn., 49 (1980), 771–778. https://doi.org/10.1143/JPSJ.49.771 doi: 10.1143/JPSJ.49.771
    [24] B. Ren, J. Lin, J. Yu, Supersymmetric Ito equation: Bosonization and exact solutions, Aip Adv., 3 (2013), 771–778. https://doi.org/10.1063/1.4802969 doi: 10.1063/1.4802969
    [25] E. G. Fan, Y. C. Hon, J. Yu, On a direct procedure for the quasi-periodic wave solutions of the supersymmetric Ito's equation, Rep. Math. Phys., 66 (2010), 355–365. https://doi.org/10.1016/S0034-4877(11)00005-X doi: 10.1016/S0034-4877(11)00005-X
    [26] A. M. Wazwaz, Integrable (3+ 1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions, Nonlinear Dynam, 109 (2022), 1929–1934. https://doi.org/10.1007/s11071-022-07517-0 doi: 10.1007/s11071-022-07517-0
    [27] H. Liu, J. Li, L. Liu, Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations, Nonlinear Dyn, 59 (2010), 497–502. https://doi.org/10.1007/s11071-009-9556-2 doi: 10.1007/s11071-009-9556-2
    [28] S. Kumar, I. Hamid, Dynamics of closed-form invariant solutions and diversity of wave profiles of (2+ 1)-dimensional Ito integro-differential equation via Lie symmetry analysis, J. Ocean Eng. Sci., (2022). https://doi.org/10.1016/j.joes.2022.06.017 doi: 10.1016/j.joes.2022.06.017
    [29] G. W. Bliman, S. Kumei, Symmetries and differential equations, New York: Springer, 2013.
    [30] P. J. Olver, Applications of Lie groups to differential equations, Springer Science & Business Media, 1993.
    [31] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311–328. https://doi.org/10.1016/j.jmaa.2006.10.078 doi: 10.1016/j.jmaa.2006.10.078
    [32] N. H. Ibragimov, Integrating factors, adjoint equations and Lagrangians, Journal of Mathematical Analysis and Applications, 318 (2006), 742–757. https://doi.org/10.1016/j.jmaa.2005.11.012 doi: 10.1016/j.jmaa.2005.11.012
    [33] N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, Mathematical Physics, (2011), 432002. https://doi.org/10.1088/1751-8113/44/43/432002 doi: 10.1088/1751-8113/44/43/432002
    [34] Z. L. Zhao, L. C. He, Lie symmetry, nonline symmetry analysis, and interaction of solutions of a (2+1)-dimemsional kdv-mkdv equation, Theor. Math. Phys, 206 (2021), 142–162. https://doi.org/10.1134/S0040577921020033 doi: 10.1134/S0040577921020033
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(834) PDF downloads(60) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog