Gardner's equation has been discussed in the article for finding new solitary wave solutions. Three efficient integration techniques, namely, the Kudryashov's R function method, the generalized projective Ricatti method and $ \frac{G'}{G^2} $-expansion method are implemented to obtain new dark soliton, bright soliton, singular soliton, and combo soliton solutions. Moreover, some of the obtained solutions are graphically depicted by using $ 3 $D-surface plots and the corresponding $ 2 $D-contour graphs.
Citation: Ghazala Akram, Saima Arshed, Maasoomah Sadaf, Hajra Mariyam, Muhammad Nauman Aslam, Riaz Ahmad, Ilyas Khan, Jawaher Alzahrani. Abundant solitary wave solutions of Gardner's equation using three effective integration techniques[J]. AIMS Mathematics, 2023, 8(4): 8171-8184. doi: 10.3934/math.2023413
Gardner's equation has been discussed in the article for finding new solitary wave solutions. Three efficient integration techniques, namely, the Kudryashov's R function method, the generalized projective Ricatti method and $ \frac{G'}{G^2} $-expansion method are implemented to obtain new dark soliton, bright soliton, singular soliton, and combo soliton solutions. Moreover, some of the obtained solutions are graphically depicted by using $ 3 $D-surface plots and the corresponding $ 2 $D-contour graphs.
[1] | W. X. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, J Geom. Phys., 132 (2018), 45–54. http://doi.org/10.1016/j.geomphys.2018.05.024 doi: 10.1016/j.geomphys.2018.05.024 |
[2] | G. Z. Wu, C. Q. Dai, Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation, J. Math. Lett., 106 (2020), 106365. http://doi.org/10.1016/j.aml.2020.106365 doi: 10.1016/j.aml.2020.106365 |
[3] | F. H. Ismael, H. Bulut, C. Park, M. S. Osman, M-lump, N-soliton solutions, and the collision phenomena for the (2 + 1) dimensional Date-Jimbo-Kashiwara-Miwa equation, Results Phys., 19 (2020), 103329. http://doi.org/10.1016/j.rinp.2020.103329 doi: 10.1016/j.rinp.2020.103329 |
[4] | M. B. Almatrafi, A. R. Alharbi, C. Tun, Constructions of the soliton solutions to the good Boussinesq equation, Adv. Differ. Equ., 2020 (2020), 629. http://doi.org/10.1186/s13662-020-03089-8 doi: 10.1186/s13662-020-03089-8 |
[5] | H. Rezazadeh, D. Kumar, A. Neirameh, M. Eslam, M. Mirzazadeh, Applications of three methods for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model with Kerr law nonlinearity, Pramana, 94 (2020), 39. http://doi.org/10.1007/s12043-019-1881-5 doi: 10.1007/s12043-019-1881-5 |
[6] | N. Nasreen, A. R. Seadawy, D. C. Lu, Construction of soliton solutions for modified Kawahara equation arising in shallow water waves using novel techniques, Int. J. Mod. Phys. B, 34 (2020), 2050045. http://doi.org/10.1142/S0217979220500459 doi: 10.1142/S0217979220500459 |
[7] | N. Faraz, M. Sadaf, G. Akram, I. Zainab, Y. Khan, Effects of fractional order time derivative on the solitary wave dynamics of the generalized ZK-Burgers equation, Results Phys., 25 (2021), 104217. http://doi.org/10.1016/j.rinp.2021.104217 doi: 10.1016/j.rinp.2021.104217 |
[8] | G. Akram, M. Sadaf, S. Arshed, F. Sameen, Bright, dark, kink, singular and periodic soliton solutions of Lakshmanan-Porsezian-Daniel model by generalized projective Riccati equations method, Optik, 241 (2021), 167051. http://doi.org/10.1016/j.ijleo.2021.167051 doi: 10.1016/j.ijleo.2021.167051 |
[9] | M. A. Wasay, Nonreciprocal wave transmission through an extended discrete nonlinear Schrödinger dimer. Phys. Rev. E, 96 (2017), 052218. http://doi.org/10.1103/PhysRevE.96.052218 doi: 10.1103/PhysRevE.96.052218 |
[10] | M. A. Wasay, Asymmetric wave transmission through one dimensional lattices with cubic-quintic nonlinearity, Sci. Rep., 8 (2018), 5987. http://doi.org/10.1038/s41598-018-24396-x doi: 10.1038/s41598-018-24396-x |
[11] | M. A. Wasay, M. L. Lyra, B. S. Ham, Enhanced nonreciprocal transmission through a saturable cubic-quintic nonlinear dimer defect, Sci. Rep., 9 (2019), 1871. http://doi.org/10.1038/s41598-019-38872-5 doi: 10.1038/s41598-019-38872-5 |
[12] | M. A. Wasay, M. Johansson, Multichannel asymmetric transmission through a dimer defect with saturable inter-site nonlinearity, J. Phys. A: Math. Theor., 53 (2020), 395702. http://doi.org/10.1088/1751-8121/aba145 doi: 10.1088/1751-8121/aba145 |
[13] | M. A. Wasay, F. X. Li, Q. H. Liu, Stationary transmission through lattices with asymmetric nonlinear quadratic-cubic defect, Phys. Lett. A, 447 (2022), 128301. http://doi.org/10.1016/j.physleta.2022.128301 doi: 10.1016/j.physleta.2022.128301 |
[14] | C. S. Gardner, J. S. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19 (1967), 1095. http://doi.org/10.1103/PhysRevLett.19.1095 doi: 10.1103/PhysRevLett.19.1095 |
[15] | R. Grimshaw, D. Pelinovsky, E. Pelinovsky, T. Talipova, Wave group dynamics in weakly nonlinear long-wave models, Phys. D: Nonlinear Phenom., 159 (2001), 35–57. http://doi.org/10.1016/S0167-2789(01)00333-5 doi: 10.1016/S0167-2789(01)00333-5 |
[16] | H. Gunerhan, Exact traveling wave solutions of the Gardner's equation by the improved-expansion method and the wave ansatz method, Math. Probl. Eng., 2020 2020, 5926836. http://doi.org/10.1155/2020/5926836 doi: 10.1155/2020/5926836 |
[17] | R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg‐devries equation and generalizations, Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204–1209. http://doi.org/10.1063/1.1664701 doi: 10.1063/1.1664701 |
[18] | Z. T. Fu, S. D. Liu, S. K. Liu, New kinds of solutions to Gardner's equation, Chaos Solitons. $ & $ Fractal., 20 (2004), 301–309. http://doi.org/10.1016/S0960-0779(03)00383-7 doi: 10.1016/S0960-0779(03)00383-7 |
[19] | D. Daghan, O. Donmez, Exact solutions of the Gardner's equation and their applications to the different physical plasmas, Braz. J. Phys., 46 (2016), 321–333. http://doi.org/10.1007/s13538-016-0420-9 doi: 10.1007/s13538-016-0420-9 |
[20] | N. A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik, 206 (2020), 163550. http://doi.org/10.1016/j.ijleo.2019.163550 doi: 10.1016/j.ijleo.2019.163550 |
[21] | R. Conte, M. Musette, Link between solitary waves and projective Riccati equations, J. Phys. A: Math. Gen., 25 (1992), 5609. |
[22] | W. A. Li, H. Chen, G. C. Zhang, The (w/g)-expansion method and its application to Vakhnenko equation, Chinese Phys. B, 18 (2009), 400. |
[23] | S. Arshed, A. Biswas, F. Mallawi, M. R. Belic, Optical solitons with complex Ginzburg-Landau equation having three nonlinear forms, Phys. Lett. A, 383 (2019), 126026. http://doi.org/10.1016/j.physleta.2019.126026 doi: 10.1016/j.physleta.2019.126026 |
[24] | J. Dan, S. Sain, S. Ghose-Choudhury, S. Garai, Solitary wave solutions of nonlinear PDEs using Kudryashov's R function method, J. Mod. Optic., 67 (2020), 1499–1507. http://doi.org/10.1080/09500340.2020.1869850 doi: 10.1080/09500340.2020.1869850 |
[25] | M. Z. Elsayed, A. A. Khaled, The generalized projective Riccati equations method and its applications for solving two nonlinear PDEs describing microtubules, Int. J. Phys. Sci., 10 (2015), 391–402. http://doi.org/10.5897/IJPS2015.4289 doi: 10.5897/IJPS2015.4289 |
[26] | Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. http://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639 |
[27] | Z. Q. Li, S. F. Tian, J. J. Yang, Soliton resolution for the Wadati-Konno-Ichikawa equation with weighted Sobolev initial data, Ann. Henri Poincare, 23 (2022), 2611–2655. http://doi.org/10.1007/s00023-021-01143-z doi: 10.1007/s00023-021-01143-z |
[28] | Z. Q. Li, S. F. Tian, J. J. Yang, E. G. Fan, Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, J. Differ. Equations, 329 (2022), 31–88. http://doi.org/10.1016/j.jde.2022.05.003 doi: 10.1016/j.jde.2022.05.003 |
[29] | J. J. Yang, S. F. Tian, Riemann-Hilbert problem and dynamics of soliton solutions of the fifth-order nonlinear Schrödinger equation, Appl. Math. Lett., 128 (2022), 107904. http://doi.org/10.1016/j.aml.2022.107904 doi: 10.1016/j.aml.2022.107904 |
[30] | S. F. Tian, J. M. Tu, T. T. Zhang, Y. R. Chen, Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation, Appl. Math. Lett., 122 (2021), 107507. http://doi.org/10.1016/j.aml.2021.107507 doi: 10.1016/j.aml.2021.107507 |
[31] | S. F. Tian, D. Guo, X. B. Wang, T. T. Zhang, Traveling wave, lump Wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+1)-dimensional Kadomtsev-Petviashvili equation with Bäcklund transformation, J. Appl. Anal. Comput., 11 (2021), 45–58. http://doi.org/10.11948/20190086 doi: 10.11948/20190086 |
[32] | J. J. Yang, S. F. Tian, Z. Q. Li, Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions, Phys. D: Nonlinear Phenom., 432 (2022), 133162. http://doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162 |
[33] | X. F. Zhang, S. F. Tian, J. J. Yang, Inverse scattering transform and soliton solutions for the Hirota equation with N distinct arbitrary order poles, Adv. Appl. Math. Mech., 14 (2022), 893–913. |
[34] | Z. Y. Yin, S. F. Tian, Nonlinear wave transitions and their mechanisms of (2+1)-dimensional Sawada-Kotera equation, Phys. D: Nonlinear Phenom., 427 (2021), 133002. http://doi.org/10.1016/j.physd.2021.133002 doi: 10.1016/j.physd.2021.133002 |
[35] | X. B. Wang, S. F. Tian, Exotic vector freak waves in the nonlocal nonlinear Schrödinger equation, Phys. D: Nonlinear Phenom., 442 (2022), 133528. http://doi.org/10.1016/j.physd.2022.133528 doi: 10.1016/j.physd.2022.133528 |
[36] | S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, P. Roy. Soc. A, 477 (2021), 20210455. http://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455 |
[37] | R. Z. Gong, D. S. Wang, Formation of the undular bores in shallow water generalized Kaup-Boussinesq model, Phys. D: Nonlinear Phenom., 439 (2022), 133398. http://doi.org/10.1016/j.physd.2022.133398 doi: 10.1016/j.physd.2022.133398 |
[38] | D. S. Wang, S. Y. Lou, Prolongation structures and exact solutions of equations, J. Math. Phys., 50 (2009), 123513. http://doi.org/10.1063/1.3267865 doi: 10.1063/1.3267865 |
[39] | D. S. Wang, L. Xu, Z. X. Xuan, The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation, J. Nonlinear Sci., 32 (2022), 3. http://doi.org/10.1007/s00332-021-09766-6 doi: 10.1007/s00332-021-09766-6 |
[40] | D. S. Wang, B. L. Guo, X. L. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differ. Equations, 266 (2019), 5209–5253. http://doi.org/10.1016/j.jde.2018.10.053 doi: 10.1016/j.jde.2018.10.053 |
[41] | D. S. Wang, Q. Li, X. Y. Wen, L. Liu, Matrix spectral problems and integrability aspects of the Błaszak-marciniak lattice equations, Rep. Math. Phys., 86 (2020), 325–353. http://doi.org/10.1016/S0034-4877(20)30087-2 doi: 10.1016/S0034-4877(20)30087-2 |
[42] | B. Ghanbari, D. Baleanu, New solutions of Gardner's equation using two analytical methods, Front. Phys., 7 (2019), 202. http://doi.org/10.3389/fphy.2019.00202 doi: 10.3389/fphy.2019.00202 |
[43] | K. J. Wang, Traveling wave solutions of the Gardner equation in dusty plasmas, Results Phys., 33 (2022), 105207. http://doi.org/10.1016/j.rinp.2022.105207 doi: 10.1016/j.rinp.2022.105207 |
[44] | A. Wazwaz, New solitons and kink solutions for the Gardner equation, Commun. Nonlinear Sci., 12 (2007), 1395–1404. http://doi.org/10.1016/j.cnsns.2005.11.007 doi: 10.1016/j.cnsns.2005.11.007 |