Research article Special Issues

Solitary waves of the generalized Zakharov equations via integration algorithms

  • Received: 19 November 2023 Revised: 03 February 2024 Accepted: 07 February 2024 Published: 02 April 2024
  • MSC : 11T71

  • In many applications, the investigation of traveling wave solutions is essential in obtaining an accurate description of the dynamical behavior of most physical phenomena. The exact solutions to nonlinear equations can provide more physical descriptions and insightful details for many problems of practical interest. This paper focuses on investigating the solitary wave solutions of the generalized Zakharov equations (GZEs) by using four integration algorithms, namely, the modified $ (g'/g^{2}) $-expansion method, the modified $ (g') $-expansion method, the generalized simple ($ w/g $)-expansion method, and the addendum to Kudryashov's method. The GZEs have been widely used to describe the propagation of Langmuir waves in the field of plasma physics. The efficiency and simplicity of these methods are evaluated based on their application to GZEs, which have yielded multiple new optical solitary wave solutions in the form of rational, trigonometric, and hyperbolic functions. By using a suitable wave transformation, the coupled nonlinear partial differential equations are converted into ordinary differential equations. The derived optical solutions are graphically depicted in $ 2 $D and $ 3 $D plots for some specific parameter values. The traveling wave solutions discovered in the current study constitute just one example of the desired solutions that may enable the exploration of the physical properties of many complex systems and could also contribute greatly to improving our understanding of many interesting natural phenomena that arise in different applications, including plasma physics, fluid mechanics, protein chemistry, wave propagation, and optical fibers.

    Citation: Hammad Alotaibi. Solitary waves of the generalized Zakharov equations via integration algorithms[J]. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619

    Related Papers:

  • In many applications, the investigation of traveling wave solutions is essential in obtaining an accurate description of the dynamical behavior of most physical phenomena. The exact solutions to nonlinear equations can provide more physical descriptions and insightful details for many problems of practical interest. This paper focuses on investigating the solitary wave solutions of the generalized Zakharov equations (GZEs) by using four integration algorithms, namely, the modified $ (g'/g^{2}) $-expansion method, the modified $ (g') $-expansion method, the generalized simple ($ w/g $)-expansion method, and the addendum to Kudryashov's method. The GZEs have been widely used to describe the propagation of Langmuir waves in the field of plasma physics. The efficiency and simplicity of these methods are evaluated based on their application to GZEs, which have yielded multiple new optical solitary wave solutions in the form of rational, trigonometric, and hyperbolic functions. By using a suitable wave transformation, the coupled nonlinear partial differential equations are converted into ordinary differential equations. The derived optical solutions are graphically depicted in $ 2 $D and $ 3 $D plots for some specific parameter values. The traveling wave solutions discovered in the current study constitute just one example of the desired solutions that may enable the exploration of the physical properties of many complex systems and could also contribute greatly to improving our understanding of many interesting natural phenomena that arise in different applications, including plasma physics, fluid mechanics, protein chemistry, wave propagation, and optical fibers.



    加载中


    [1] A. Wazwaz, Partial differential equations and solitary waves theorem, Berlin: Springer, 2009. https://doi.org/10.1007/978-3-642-00251-9
    [2] R. Grimshaw, The solitary wave in water of variable depth, J. Fluid Mech., 42 (1970), 639–656. https://doi.org/10.1017/S0022112070001520 doi: 10.1017/S0022112070001520
    [3] D. Baleanu, A. Machado, A. Luo, Fractional dynamics and control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6
    [4] B. Boudjehem, D. Boudjehem, Parameter tuning of a fractional-order PI controller using the ITAE criteria, In: Fractional dynamics control, New York: Springer, 2012, 49–57. https://doi.org/10.1007/978-1-4614-0457-6_4
    [5] H. Alotaibi, Developing multiscale methodologies for computational fluid mechanics, Ph. D Thesis, University of Adelaide, 2017. https://doi.org/10.25909/5ba30242307d5
    [6] A. Zhou, X. Li, Zakharov equations for viscous flow and their use in the blood clot formation, Pramana, 89 (2017), 82. https://doi.org/10.1007/s12043-017-1478-9 doi: 10.1007/s12043-017-1478-9
    [7] A. Wazwaz, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Appl. Math. Comput., 186 (2007), 130–141. https://doi.org/10.1016/j.amc.2006.07.092 doi: 10.1016/j.amc.2006.07.092
    [8] K. Khan, M. Akbar, Application of $(\exp (-\phi (\xi)))$-expansion method to find the exact solutions of modified Benjamin-Bona-Mahony equation, World Appl. Sci. J., 10 (2013), 1373–1377.
    [9] L. Wu, S. Chen, C. Pang, Traveling wave solution for generalized Drinfeld-Sokolov equations, Appl. Math. Model., 33 (2009), 4126–4130. https://doi.org/10.1016/j.apm.2009.02.013 doi: 10.1016/j.apm.2009.02.013
    [10] F. Zhang, J. Qi, W. Yuan, Further results about traveling wave exact solutions of the Drinfeld-Sokolov equations, J. Appl. Math., 2013 (2013), 523732. https://doi.org/10.1155/2013/523732 doi: 10.1155/2013/523732
    [11] M. Abdou, The extended tanh-method and its applications for solving nonlinear physical models, Appl. Math. Comput., 190 (2007), 988–996. https://doi.org/10.1016/j.amc.2007.01.070 doi: 10.1016/j.amc.2007.01.070
    [12] A. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model., 40 (2004), 499–508. https://doi.org/10.1016/j.mcm.2003.12.010 doi: 10.1016/j.mcm.2003.12.010
    [13] Sirendaoreji, New exact traveling wave solutions for the Kawahara and modified Kawahara equations, Chaos Soliton. Fract., 19 (2004), 147–150. https://doi.org/10.1016/S0960-0779(03)00102-4 doi: 10.1016/S0960-0779(03)00102-4
    [14] M. Abd-el-Malek, A. Amin, New exact solutions for solving the initial-value-problem of the KdV-KP equation via the Lie group method, Appl. Math. Comput., 261 (2015), 408–418. https://doi.org/10.1016/j.amc.2015.03.117 doi: 10.1016/j.amc.2015.03.117
    [15] M. Akbar, N. Ali, New solitary and periodic solutions of nonlinear evolution equation by exp-function method, World Appl. Sci. J., 17 (2012), 1603–1610.
    [16] J. He, X. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [17] S. Abbasbandy, Numerical solutions of nonlinear Klein-Gordon equation by variational iteration method, Int. J. Numer. Meth. Eng., 70 (2007), 876–881. https://doi.org/10.1002/nme.1924 doi: 10.1002/nme.1924
    [18] M. Kaplan, A. Bekir, A. Akbulut, A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dyn., 85 (2016), 2843–2850. https://doi.org/10.1007/s11071-016-2867-1 doi: 10.1007/s11071-016-2867-1
    [19] H. Alotaibi, Traveling wave solutions to the nonlinear evolution equation using expansion method and Addendum to Kudryashov's method, Symmetry, 13 (2021), 2126. https://doi.org/10.3390/sym13112126 doi: 10.3390/sym13112126
    [20] H. Alotaibi, Explore optical solitary wave solutions of the KP equation by recent approaches, Crystals, 12 (2022), 159. https://doi.org/10.3390/cryst12020159 doi: 10.3390/cryst12020159
    [21] K. Gepreel, Exact soliton solutions for nonlinear perturbed Schrödinger equations with nonlinear optical media, Appl. Sci., 10 (2020), 8929. https://doi.org/10.3390/app10248929 doi: 10.3390/app10248929
    [22] B. Zhong, J. Jiang, Y. Feng, New exact solutions of fractional Boussinesq-like equations, Commun. Optim. Theory, 2020 (2020), 21. https://doi.org/10.23952/cot.2020.21 doi: 10.23952/cot.2020.21
    [23] E. Zayed, K. Gepreel, M. El-Horbaty, A. Biswas, Y. Yıldırım, H. Alshehri, Highly dispersive optical solitons with complex Ginzburg-Landau equation having six nonlinear forms, Mathematics, 9 (2021), 3270. https://doi.org/10.3390/math9243270 doi: 10.3390/math9243270
    [24] J. Xu, E. Fan, Y. Chen, Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value, Math. Phys. Anal. Geom., 16 (2013), 253–288. https://doi.org/10.1007/s11040-013-9132-3 doi: 10.1007/s11040-013-9132-3
    [25] L. Xu, D. Wang, X. Wen, Y. Jiang, Exotic localized vector waves in a two-component nonlinear wave system, J. Nonlinear Sci., 30 (2020), 537–564. https://doi.org/10.1007/s00332-019-09581-0 doi: 10.1007/s00332-019-09581-0
    [26] C. Charlier, J. Lenells, D. Wang, The "good" Boussinesq equation: long-time asymptotics, Anal. PDE, 16 (2023), 1351–1388. https://doi.org/10.2140/apde.2023.16.1351 doi: 10.2140/apde.2023.16.1351
    [27] D. Bilman, R. Buckingham, D. Wang, Far-field asymptotics for multiple-pole solitons in the large-order limit, J. Differ. Equations, 297 (2021), 320–369. https://doi.org/10.1016/j.jde.2021.06.016 doi: 10.1016/j.jde.2021.06.016
    [28] V. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908–914.
    [29] M. Goldman, Strong turbulence of plasma waves, Rev. Mod. Phys., 56 (1984), 709. https://doi.org/10.1103/RevModPhys.56.709 doi: 10.1103/RevModPhys.56.709
    [30] Y. Shang, Y. Huang, W. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput., 200 (2008), 110–122. https://doi.org/10.1016/j.amc.2007.10.059 doi: 10.1016/j.amc.2007.10.059
    [31] D. Huang, H. Zhang, Extended hyperbolic function method and new exact solitary wave solutions of Zakharov equations (Chinese), Acta Phys. Sin., 53 (2004), 2434–2438. https://doi.org/10.7498/aps.53.2434 doi: 10.7498/aps.53.2434
    [32] S. Liu, Z. Fu, S. Liu, Q. Zhao, The envelope periodic solutions to nonlinear wave equations with Jacobi elliptic function (Chinese), Acta Phys. Sin., 51 (2002), 718–722.
    [33] G. Wu, M. Zhang, L. Shi, W. Zhang, J. Han, An extended expansion method for Jacobi elliptic functions and new exact periodic solutions of Zakharov equations (Chinese), Acta Phys. Sin., 56 (2007), 5054–5059. https://doi.org/10.7498/aps.56.5054 doi: 10.7498/aps.56.5054
    [34] C. Zhao, Z. Sheng, Explicit traveling wave solutions for Zakharov equations (Chinese), Acta Phys. Sin., 53 (2004), 1629–1634. https://doi.org/10.7498/aps.53.1629 doi: 10.7498/aps.53.1629
    [35] E. Zayed, M. Abdelaziz, Exact solutions for the generalized Zakharov-Kuznetsov equation with variable coefficients using the generalized $(G' / G)$-expansion method, AIP Conf. Proc., 1281 (2010), 2216–2219. https://doi.org/10.1063/1.3498415 doi: 10.1063/1.3498415
    [36] Y. Yıldırım, A. Biswas, M. Ekici, O. Gonzalez-Gaxiola, S. Khan, H. Triki, et al., Optical solitons with Kudryashov's model by a range of integration norms, Chinese J. Phys., 66 (2020), 660–672. https://doi.org/10.1016/j.cjph.2020.06.005 doi: 10.1016/j.cjph.2020.06.005
    [37] Y. Gurefe, E. Misirli, Y. Pandir, A. Sonmezoglu, M. Ekici, New exact solutions of the Davey-Stewartson equation with power-law nonlinearity, Bull. Malays. Math. Sci. Soc., 38 (2015), 1223–1234. https://doi.org/10.1007/s40840-014-0075-z doi: 10.1007/s40840-014-0075-z
    [38] H. Zhang, New exact traveling wave solutions of the generalized Zakharov equations, Rep. Math. Phys., 60 (2007), 97–106. https://doi.org/10.1016/S0034-4877(07)80101-7 doi: 10.1016/S0034-4877(07)80101-7
    [39] J. Pava, C. Brango, Orbital stability for the periodic Zakharov system, Nonlinearity, 24 (2011), 2913. https://doi.org/10.1088/0951-7715/24/10/013 doi: 10.1088/0951-7715/24/10/013
    [40] A. Borhanifar, M. Kabir, L. Maryam Vahdat, New periodic and soliton wave solutions for the generalized Zakharov system and $(2+ 1)$-dimensional Nizhnik-Novikov-Veselov system, Chaos Soliton. Fract., 42 (2009), 1646–1654. https://doi.org/10.1016/j.chaos.2009.03.064 doi: 10.1016/j.chaos.2009.03.064
    [41] M. Wang, X. Li, Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations, Phys. Lett. A, 343 (2005), 48–54. https://doi.org/10.1016/j.physleta.2005.05.085 doi: 10.1016/j.physleta.2005.05.085
    [42] S. Abbasbandy, E. Babolian, M. Ashtiani, Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci., 14 (2009), 4114–4121. https://doi.org/10.1016/j.cnsns.2009.03.001 doi: 10.1016/j.cnsns.2009.03.001
    [43] J. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Soliton. Fract., 19 (2004), 847–851. https://doi.org/10.1016/S0960-0779(03)00265-0 doi: 10.1016/S0960-0779(03)00265-0
    [44] J. He, Erratum to: variational principle for two-dimensional incompressible inviscid flow, Phys. Lett. A, 372 (2008), 5858–5859. https://doi.org/10.1016/j.physleta.2008.07.043 doi: 10.1016/j.physleta.2008.07.043
    [45] Y. Khan, N. Faraz, A. Yildirim, New soliton solutions of the generalized Zakharov equations using He's variational approach, Appl. Math. Lett., 24 (2011), 965–968. https://doi.org/10.1016/j.aml.2011.01.006 doi: 10.1016/j.aml.2011.01.006
    [46] P. Veeresha, D. Prakasha, Solution for fractional generalized Zakharov equations with Mittag-Leffler function, Results in Engineering, 5 (2020), 100085. https://doi.org/10.1016/j.rineng.2019.100085 doi: 10.1016/j.rineng.2019.100085
    [47] M. Wang, X. Li, J. Zhang, The $(G' / G)$-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423. https://doi.org/10.1016/j.physleta.2007.07.051 doi: 10.1016/j.physleta.2007.07.051
    [48] W. Li, H. Chen, G. Zhang, The $ (w/g) $-expansion method and its application to Vakhnenko equation, Chinese Phys. B, 18 (2009), 400. https://doi.org/10.1088/1674-1056/18/2/004 doi: 10.1088/1674-1056/18/2/004
    [49] M. Golman, Langmuir wave solitons and spatial collapse in plasma physics, Physica D, 18 (1986), 67–76. https://doi.org/10.1016/0167-2789(86)90163-6 doi: 10.1016/0167-2789(86)90163-6
    [50] E. Zayed, M. Alngar, A. Biswas, A. Kara, M. Ekici, A. Alzahrani, et al., Cubic-quartic optical solitons and conservation laws with Kudryashov's sextic power-law of refractive index, Optik, 227 (2021), 166059. https://doi.org/10.1016/j.ijleo.2020.166059 doi: 10.1016/j.ijleo.2020.166059
    [51] M. Attia, A. Elhanbaly, M. Abdou, New exact solutions for isothermal magne to static atmosphere equations, WJST, 12 (2014), 961–973. https://doi.org/10.14456/WJST.2015.42 doi: 10.14456/WJST.2015.42
    [52] M. Wang, X. Li, Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations, Phys. Lett. A, 343 (2005), 48–54. https://doi.org/10.1016/j.physleta.2005.05.085 doi: 10.1016/j.physleta.2005.05.085
    [53] K. Gepreel, Exact solutions for nonlinear integral member of Kadomtsev-Petviashvili hierarchy differential equations using the modified $(w/g)$-expansion method, Comput. Math. Appl., 72 (2016), 2072–2083. https://doi.org/10.1016/j.camwa.2016.08.005 doi: 10.1016/j.camwa.2016.08.005
    [54] H. Abdusalam, On an improved complex $\tanh$-function method, Int. J. Nonlin. Sci. Num., 6 (2005), 99–106. https://doi.org/10.1515/IJNSNS.2005.6.2.99 doi: 10.1515/IJNSNS.2005.6.2.99
    [55] E. Zayed, H. Zedan, K. Gepreel, Group analysis and modified extended Tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations, Int. J. Nonlin. Sci. Num., 5 (2004), 221–234. https://doi.org/10.1515/IJNSNS.2004.5.3.221 doi: 10.1515/IJNSNS.2004.5.3.221
    [56] S. Ege, E. Misirli, Extended Kudryashov method for fractional nonlinear differential equations, Mathematical Sciences and Applications E-Notes, 6 (2018), 19–28. https://doi.org/10.36753/mathenot.421751 doi: 10.36753/mathenot.421751
    [57] E. Zayed, R. Shohib, M. Alngar, New extended generalized Kudryashov method for solving three nonlinear partial differential equations, Nonlinear Anal.-Model., 25 (2020), 598–617. https://doi.org/10.15388/namc.2020.25.17203 doi: 10.15388/namc.2020.25.17203
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(706) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog