
This paper applies two computational techniques for constructing novel solitary wave solutions of the ill-posed Boussinesq dynamic wave (IPB) equation. Jacques Hadamard has formulated this model for studying the dynamic behavior of waves in shallow water under gravity. Extended simple equation (ESE) method and novel Riccati expansion (NRE) method have been applied to the investigated model's converted nonlinear ordinary differential equation through the wave transformation. As a result of this research, many solitary wave solutions have been obtained and represented in different figures in two-dimensional, three-dimensional, and density plots. The explanation of the methods used shows their dynamics and effectiveness in dealing with certain nonlinear evolution equations.
Citation: Mostafa M. A. Khater, S. H. Alfalqi, J. F. Alzaidi, Samir A. Salama, Fuzhang Wang. Plenty of wave solutions to the ill-posed Boussinesq dynamic wave equation under shallow water beneath gravity[J]. AIMS Mathematics, 2022, 7(1): 54-81. doi: 10.3934/math.2022004
[1] | Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086 |
[2] | Ali Althobaiti . Novel wave solutions for the sixth-order Boussinesq equation arising in nonlinear lattice dynamics. AIMS Mathematics, 2024, 9(11): 30972-30988. doi: 10.3934/math.20241494 |
[3] | Mohammad Alqudah, Safyan Mukhtar, Haifa A. Alyousef, Sherif M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water. AIMS Mathematics, 2024, 9(8): 21212-21238. doi: 10.3934/math.20241030 |
[4] | Huitzilin Yépez-Martínez, Mir Sajjad Hashemi, Ali Saleh Alshomrani, Mustafa Inc . Analytical solutions for nonlinear systems using Nucci's reduction approach and generalized projective Riccati equations. AIMS Mathematics, 2023, 8(7): 16655-16690. doi: 10.3934/math.2023852 |
[5] | Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162 |
[6] | Ghazala Akram, Maasoomah Sadaf, Mirfa Dawood, Muhammad Abbas, Dumitru Baleanu . Solitary wave solutions to Gardner equation using improved tan$ \left(\frac{\Omega(\Upsilon)}{2}\right) $-expansion method. AIMS Mathematics, 2023, 8(2): 4390-4406. doi: 10.3934/math.2023219 |
[7] | Haci Mehmet Baskonus, Md Nurul Raihen, Mehmet Kayalar . On the extraction of complex behavior of generalized higher-order nonlinear Boussinesq dynamical wave equation and (1+1)-dimensional Van der Waals gas system. AIMS Mathematics, 2024, 9(10): 28379-28399. doi: 10.3934/math.20241377 |
[8] | Abdullahi Yusuf, Tukur A. Sulaiman, Mustafa Inc, Sayed Abdel-Khalek, K. H. Mahmoud . $ M- $truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains. AIMS Mathematics, 2021, 6(9): 9207-9221. doi: 10.3934/math.2021535 |
[9] | Azzh Saad Alshehry, Safyan Mukhtar, Ali M. Mahnashi . Optical fractals and Hump soliton structures in integrable Kuralay-Ⅱ system. AIMS Mathematics, 2024, 9(10): 28058-28078. doi: 10.3934/math.20241361 |
[10] | Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661 |
This paper applies two computational techniques for constructing novel solitary wave solutions of the ill-posed Boussinesq dynamic wave (IPB) equation. Jacques Hadamard has formulated this model for studying the dynamic behavior of waves in shallow water under gravity. Extended simple equation (ESE) method and novel Riccati expansion (NRE) method have been applied to the investigated model's converted nonlinear ordinary differential equation through the wave transformation. As a result of this research, many solitary wave solutions have been obtained and represented in different figures in two-dimensional, three-dimensional, and density plots. The explanation of the methods used shows their dynamics and effectiveness in dealing with certain nonlinear evolution equations.
Beginning from the mid of 18th century, Euler, Cauchy, d'Alembert, Hamilton, Jacobi, Lagrange, Laplace, Monge, and many others have started formulating some complex nonlinear phenomena through nonlinear partial differential equations [1,2]. Many complex phenomena, such as solid-state physics, mechanics, fluid mechanics, surface plasma physics, quantum mechanics, civic engineering, population climate, neural networks, epidemiology for infectious disorders, plasma wave, thermodynamics, physics of condensed matter, nonlinear optics, etc., are extracted in distinct mathematical formulas [3,4,5]. Many computational schemes have been formulated for constructing novel solitary wave solutions that describe the physical and dynamical behavior of these phenomena [6,7,8]. In 1834 John Russell pointed out the lonely solutions of moving waves by adding a particular parameter value in the closed shape [9,10]. There are several common types of solitary wave solutions. Such solitary wave solutions explain much about the physical properties of these models [11,12,13].
Here, this article studies the well-known nonlinear IPB model through the ESE and NRE methods for constructing novel lattice soliton solutions and investigating the physical characterizes of the along wave in shallow water beneath gravity [14,15]. The mathematical model of the considered model is given by [16,17]
Utt=Uxx+(U2)xx+Uxxx, | (1.1) |
where U=U(x,t) describes promulgation of small amplitude long waves (long compared to the amplitude of the wave) in sundry physical contexts inclusive shallow water under gravity. Implementing the next wave transformation U=V(Z),Z=x−ct, where c is arbitrary constant to be evaluated later, converts the nonlinear partial differential equation into the following the ordinary differential equation
(c2−1)V−V2−V″=0. | (1.2) |
Applying the homogeneous balance principles to the highest order derivative term and nonlinear term of Eq (1.2), get N=2. Using the general formula of the suggested computational schemes [3,4,5,6,7], get the traveling solutions of the IPB model in the next formula
V(Z)={N∑j=−Najϕj(Z)=a−2ϕ2(Z)+a−1ϕ(Z)+a0+a1ϕ(Z)+a2ϕ2(Z),N∑j=−Naj(d+ψ(Z))j=a−2(d+ψ(Z))2+a−1(d+ψ(Z))+a0+a1(d+ψ(Z))+a2(d+ψ(Z))2, | (1.3) |
where aj,j=−2,⋯,2, are arbitrary constants to be determined later. While ϕ(Z),ψ(Z) satisfy the following auxiliary equations
{ϕ′(Z)=G1+G2ϕ(Z)+G3ϕ(Z)2,ψ′(Z)=(d2E3−d2−dE2+E1)+(−2dE3+2d+E2)ψ(Z)+(E3−1)ψ(Z)2, | (1.4) |
where d,Gi,Ei,(i=1,2,3) are arbitrary constants to be determined through the suggested analytical schemes' framework.
The paper's rest sections are organized as follows: Section 2 handles the considered model through the ESE and NRE methods [18,19,20,21,22,23,24]. Additionally, the solitary wave solutions are explained through two, three-dimensional, and density plots to illustrate the dynamical behavior of shallow water waves beneath gravity. Section 4 discusses the obtained solitary wave solutions and their novelty. Section 5 gives the conclusion of the whole paper.
Here, we use the suggested computational schemes' framework to determine the above-shown parameters.
Handling the considered model along with the ESE method gives the following sets of parameters' value.
Set A
G3=1−c216G1,G2=0,a−2=−6G21,a−1=a1=0,a0=34(c2−1),a2=−3(1−2c2+c4)128G21. |
Thus, the model's soliton solutions are given by
When G2=0, we acquire:
Case 1. When G1G3>0
U(Z)=−6G1G3cot2(√G1G3(Z+C))+3(c2−1)4−3(1−2c2+c4)128G1G3×tan2(√G1G3(Z+C)), | (2.1) |
U(Z)=−6G1G3tan2(√G1G3(Z+C))+3(c2−1)4−3(1−2c2+c4)128G1G3×cot2(√G1G3(Z+C)). | (2.2) |
Case 2. When G1G3<0
U(Z)=6G1G3coth2(√−G1G3(Z+C))+3(c2−1)4+3(1−2c2+c4)128G1G3×tanh2(√−G1G3(Z+C)), | (2.3) |
U(Z)=6G1G3tanh2(√−G1G3(Z+C))+3(c2−1)4+3(1−2c2+c4)128G1G3×coth2(√−G1G3(Z+C)). | (2.4) |
Set B
G3=c2−116G1,G2=0,a−2=−6G21,a−1=a1=0,a0=14(c2−1),a2=−3(1−2c2+c4)128G21. | (2.5) |
Thus, the model's soliton solutions are given by
Case 1. When G1G3>0
U(Z)=−6G1G3cot2(√G1G3(Z+C))+1(c2−1)4−3(1−2c2+c4)128G1G3tan2(√G1G3(Z+C)), | (2.6) |
U(Z)=−6G1G3tan2(√G1G3(Z+C))+1(c2−1)4−3(1−2c2+c4)128G1G3cot2(√G1G3(Z+C)). | (2.7) |
Case 2. When G1G3<0
U(Z)=6G1G3coth2(√−G1G3Z∓ln(C)2)+1(c2−1)4+3(1−2c2+c4)128G1G3×tanh2(√−G1G3Z∓ln(C)2), | (2.8) |
U(Z)=6G1G3tanh2(√−G1G3Z∓ln(C)2)+1(c2−1)4+3(1−2c2+c4)128G1G3×coth2(√−G1G3Z∓ln(C)2). | (2.9) |
Set C
G3=c2−1+G224G1,a−2=−6G21,a−1=−6G1G2,a0=−12(3G22−1+c2),a1=a2=0. |
Thus, the model's soliton solutions are given by
When G2=0, we acquire:
Case 1. When G1G3>0
U(Z)=−6G1G3cot2(√G1G3(Z+C))−12(−1+c2), | (2.10) |
U(Z)=−6G1G3tan2(√G1G3(Z+C))−12(−1+c2). | (2.11) |
Case 2. When G1G3<0
U(Z)=6G1G3coth2(√−G1G3Z∓ln(C)2)−12(−1+c2), | (2.12) |
U(Z)=6G1G3tanh2(√−G1G3Z∓ln(C)2)−12(−1+c2). | (2.13) |
Additionally, the general soliton solutions are given by
Case 1. When 4G1G3>G22 and G3>0
U(Z)=−24G21G23(√4G1G3−G22tan(√4G1G3−G222(Z+C))−G2)2−12G1G2G3√4G1G3−G22tan(√4G1G3−G222(Z+C))−G2−12(3G22−1+c2), | (2.14) |
U(Z)=−24G21G23(√4G1G3−G22cot(√4G1G3−G222(Z+C))−G2)2−12G1G2G3√4G1G3−G22cot(√4G1G3−G222(Z+C))−G2−12(3G22−1+c2). | (2.15) |
Case 2. When 4G1G3>G22 and G3<0
U(Z)=−24G21G23(√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2)2−12G1G2G3√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2−12(3G22−1+c2), | (2.16) |
U(Z)=−24G21G23(√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2)2−12G1G2G3√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2−12(3G22−1+c2). | (2.17) |
Set D
G3=−c2−1−G224G1,a−2=−6G21,a−1=−6G1G2,a0=−32(G22−1+c2),a1=a2=0. |
Thus, the model's soliton solutions are given by
When G2=0, we acquire:
Case 1. When G1G3>0
U(Z)=−6G1G3cot2(√G1G3(Z+C))−32(−1+c2), | (2.18) |
U(Z)=−6G1G3tan2(√G1G3(Z+C))−32(−1+c2). | (2.19) |
Case 2. When G1G3<0
U(Z)=6G1G3coth2(√−G1G3Z∓ln(C)2)−32(−1+c2), | (2.20) |
U(Z)=6G1G3tanh2(√−G1G3Z∓ln(C)2)−32(−1+c2). | (2.21) |
Additionally, the general soliton solutions are given by
Case 1. When 4G1G3>G22 and G3>0
U(Z)=−24G21G23(√4G1G3−G22tan(√4G1G3−G222(Z+C))−G2)2−12G1G2G3√4G1G3−G22tan(√4G1G3−G222(Z+C))−G22G3−32(G22−1+c2), | (2.22) |
U(Z)=−24G21G23(√4G1G3−G22cot(√4G1G3−G222(Z+C))−G2)2−12G1G2G3√4G1G3−G22cot(√4G1G3−G222(Z+C))−G22G3−32(G22−1+c2). | (2.23) |
Case 2. When 4G1G3>G22 and G3<0
U(Z)=−24G21G23(√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2)2−12G1G2G3√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2−32(G22−1+c2), | (2.24) |
U(Z)=−24G21G23(√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2)2−12G1G2G3√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2−32(G22−1+c2), | (2.25) |
Set E
G1=−36G23+36c2G23+a21144G33,G2=−a16G3,a−2=a−1=0,a0=−a21−12G23+12c2G2324G23,a2=−6G23. |
Thus, the model's soliton solutions are given by
When G2=0, we acquire:
Case 1. When G1G3>0
U(Z)=−a21−12G23+12c2G2324G23−6G3G1tan2(√G1G3(Z+C)), | (2.26) |
U(Z)=−a21−12G23+12c2G2324G23−6G3G1cot2(√G1G3(Z+C)). | (2.27) |
Case 2. When G1G3<0
U(Z)=−a21−12G23+12c2G2324G23+6G3G1tanh2(√−G1G3Z∓ln(C)2), | (2.28) |
U(Z)=−a21−12G23+12c2G2324G23+6G3G1coth2(√−G1G3Z∓ln(C)2). | (2.29) |
When G1=0, we acquire
Case 1. When G2>0
U(Z)=−a21−12G23+12c2G2324G23+a1G2eG2(Z+C)1−G3eG2(Z+C)−6G23(G2eG2(Z+C)1−G3eG2(Z+C))2, | (2.30) |
Case 2. When G2<0
U(Z)=−a21−12G23+12c2G2324G23−a1G3eG2(Z+C)1+G3eG2(Z+C)−6G23(G3eG2(Z+C)1+G3eG2(Z+C))2. | (2.31) |
Additionally, the general soliton solutions are given by
Case 1. When 4G1G3>G22 and G3>0
U(Z)=−a21−12G23+12c2G2324G23+a12G3(√4G1G3−G22tan(√4G1G3−G222(Z+C))−G2)−32(√4G1G3−G22tan(√4G1G3−G222(Z+C))−G2)2, | (2.32) |
U(Z)=−a21−12G23+12c2G2324G23+a12G3(√4G1G3−G22cot(√4G1G3−G222(Z+C))−G2)−32(√4G1G3−G22cot(√4G1G3−G222(Z+C))−G2)2. | (2.33) |
Case 2. When 4G1G3>G22 and G3<0
U(Z)=−a21−12G23+12c2G2324G23+a12G3(√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2)−32(√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2)2, | (2.34) |
U(Z)=−a21−12G23+12c2G2324G23+a12G3(√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2)−32(√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2)2. | (2.35) |
Set F
G1=−36G23+36c2G23−a21144G33,G2=−a16G3,a−2=a−1=0,a0=−a21+36G23−36c2G2324G23,a2=−6G23. |
Thus, the model's soliton solutions are given by
When G2=0, we acquire:
Case 1. When G1G3>0
U(Z)=−a21+36G23−36c2G2324G23−6G3G1tan2(√G1G3(Z+C)), | (2.36) |
U(Z)=−a21+36G23−36c2G2324G23−6G3G1cot2(√G1G3(Z+C)). | (2.37) |
Case 2. When G1G3<0
U(Z)=−a21+36G23−36c2G2324G23+6G3G1tanh2(√−G1G3Z∓ln(C)2), | (2.38) |
U(Z)=−a21+36G23−36c2G2324G23+6G3G1coth2(√−G1G3Z∓ln(C)2). | (2.39) |
When G1=0, we acquire
Case 1. When G2>0
U(Z)=−a21+36G23−36c2G2324G23+a1G2eG2(Z+C)1−G3eG2(Z+C)−6G23(G2eG2(Z+C)1−G3eG2(Z+C))2, | (2.40) |
Case 2. When G2<0
U(Z)=−a21+36G23−36c2G2324G23−,a1G3eG2(Z+C)1+G3eG2(Z+C)−6G23(G3eG2(Z+C)1+G3eG2(Z+C))2. | (2.41) |
Additionally, the general soliton solutions are given by
Case 1. When 4G1G3>G22 and G3>0
U(Z)=−a21+36G23−36c2G2324G23+a12G3(√4G1G3−G22tan(√4G1G3−G222(Z+C))−G2)−32(√4G1G3−G22tan(√4G1G3−G222(Z+C))−G2)2, | (2.42) |
U(Z)=−a21+36G23−36c2G2324G23+a12G3(√4G1G3−G22cot(√4G1G3−G222(Z+C))−G2)−32(√4G1G3−G22cot(√4G1G3−G222(Z+C))−G2)2. | (2.43) |
Case 2. When 4G1G3>G22 and G3<0
U(Z)=−a21+36G23−36c2G2324G23+a12G3(√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2)32(√4G1G3−G22tan(√4G1G3−G222(Z+C))+G2)2, | (2.44) |
U(Z)=−a21+36G23−36c2G2324G23+a12G3(√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2)32(√4G1G3−G22cot(√4G1G3−G222(Z+C))+G2)2. | (2.45) |
Handling the considered model along with the NRE method gives the following sets of parameters' value.
Set A
c=√4E1E3−4E1+1−E22,a−2=a−1=0,a0=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2,a1=−E2(6E3−6)+12E32d−24E3d+12d,a2=−6E32−6+12E3. |
Thus, the model's soliton solutions are given by
When (C=E22−4E2E1+4E1>0) and (E2(E3−1)≠0) or (E1(E3−1)≠0):
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2×(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√Ctanh(√C2Z)))+(−6E32−6+12E3)(d−12(E3−1)(E2+√Ctanh(√C2Z)))2, | (2.46) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√Ccoth(√C2Z)))+(−6E32−6+12E3)(d−12(E3−1)(E2+√Ccoth(√C2Z)))2, | (2.47) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√C(tanh(√CZ)±isech(√CZ))))+(−6E32−6+12E3)(d−12(E3−1)(E2+√C(tanh(√CZ)±isech(√CZ))))2, | (2.48) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√C(coth(√CZ)±csch(√CZ))))+(−6E32−6+12E3)(d−12(E3−1)(E2+√C(coth(√CZ)±csch(√CZ))))2. | (2.49) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−14(E3−1)(2E2+√C(tanh(√C4Z)±coth(√C4Z))))+(−6E32−6+12E3)(d−14(E3−1)(2E2+√C(tanh(√C4Z)±coth(√C4Z))))2, | (2.50) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+±√C(A2+B2)−A√Ccosh(√CZ)Asinh(√CZ)+B))+(−6E32−6+12E3)(d+12(E3−1)(−E2+±√C(A2+B2)−A√Ccosh(√CZ)Asinh(√CZ)+B))2, | (2.51) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+±√C(A2+B2)+A√Ccosh(√CZ)Asinh(√CZ)+B))+(−6E32−6+12E3)(d+12(E3−1)(−E2+±√C(A2+B2)+A√Ccosh(√CZ)Asinh(√CZ)+B))2, | (2.52) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1cosh(√C2Z)√Csinh(√C2Z)−E2cosh(√C2Z))+(−6E32−6+12E3)(d+2E1cosh(√C2Z)√Csinh(√C2Z)−E2cosh(√C2Z))2, | (2.53) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sinh(√C2Z)√Ccosh(√C2Z)−E2sinh(√C2Z))+(−6E32−6+12E3)(d+2E1sinh(√C2Z)√Ccosh(√C2Z)−E2sinh(√C2Z))2, | (2.54) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1cosh(√CZ)√Csinh(√CZ)−E2cosh(√CZ)±i√C)+(−6E32−6+12E3)(d+2E1cosh(√CZ)√Csinh(√CZ)−E2cosh(√CZ)±i√C)2, | (2.55) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sinh(√CZ)√Ccosh(√CZ)−E2sinh(√CZ)±i√C)+(−6E32−6+12E3)(d+2E1sinh(√CZ)√Ccosh(√CZ)−E2sinh(√CZ)±i√C)2, | (2.56) |
While A, B are arbitrary real constants and A2+B2>0.
When (C=E22−4E2E1+4E1<0) and (E2(E3−1)≠0) or (E1(E3−1)≠0):
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+√−Ctanh(√−C2Z)))+(−6E32−6+12E3)(d+12(E3−1)(−E2+√−Ctanh(√−C2Z)))2, | (2.57) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√−Ccoth(√−C2Z)))+(−6E32−6+12E3)(d−12(E3−1)(E2+√−Ccoth(√−C2Z)))2, | (2.58) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))+(−6E32−6+12E3)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))2, | (2.59) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))+(−6E32−6+12E3)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))2, | (2.60) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√−C(cot(√−CZ)±csc(√−CZ))))+(−6E32−6+12E3)(d−12(E3−1)(E2+√−C(cot(√−CZ)±csc(√−CZ))))2, | (2.61) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+14(E3−1)(−2E2+√−C(tan(√−C4Z)−cot(√−C4Z))))+(−6E32−6+12E3)(d+14(E3−1)(−2E2+√−C×(tan(√−C4Z)−cot(√−C4Z))))2, | (2.62) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+±√−C(A2−B2)−A√−Ccos(√−CZ)Asin(√−CZ)+B))+(−6E32−6+12E3)(d+12(E3−1)(−E2+±√−C(A2−B2)−A√−Ccos(√−CZ)Asin(√−CZ)+B))2, | (2.63) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+±√−C(A2−B2)+A√−Ccos(√−CZ)Asin(√−CZ)+B))+(−6E32−6+12E3)(d+12(E3−1)(−E2+±√−C(A2−B2)+A√−Ccos(√−CZ)Asin(√−CZ)+B))2, | (2.64) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−2E1cos(√−C2Z)√−Csin(√−C2Z)+E2cos(√−C2Z))+(−6E32−6+12E3)×(d−2E1cos(√−C2Z)√−Csin(√−C2Z)+E2cos(√−C2Z))2, | (2.65) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sin(√−C2Z)√−Ccos(√−C2Z)−E2sin(√−C2Z))+(−6E32−6+12E3)×(d+2E1sin(√−C2Z)√−Ccos(√−C2Z)−E2sin(√−C2Z))2, | (2.66) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sin(√−CZ)√−Ccos(√−CZ)−E2sin(√−CZ)±√−C)+(−6E32−6+12E3)×(d+2E1sin(√−CZ)√−Ccos(√−CZ)−E2sin(√−CZ)±√−C)2, | (2.67) |
While A, B are arbitrary real constants and A2−B2>0.
When E1=0 and E2(E3−1)≠0, we have:
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−E2k(E3−1)(k+cosh(E2Z)−sinh(E2Z)))+(−6E32−6+12E3)×(d−E2k(E3−1)(k+cosh(E2Z)−sinh(E2Z)))2, | (2.68) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−E2(cosh(E2Z)+sinh(E2Z))(E3−1)(k+cosh(E2Z)+sinh(E2Z)))+(−6E32−6+12E3)×(d−E2(cosh(E2Z)+sinh(E2Z))(E3−1)(k+cosh(E2Z)+sinh(E2Z)))2, | (2.69) |
U(Z)=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−1(E3−1)Z+C)+(−6E32−6+12E3)×(d−1(E3−1)Z+C)2. | (2.70) |
Set B
c=√−4E1E3+4E1+1−E22,a−2=a−1=0,a0=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2,a1=−E2(6E3−6)+12E32d−24E3d+12d,a2=−6E32−6+12E3. | (2.71) |
Thus, the model's soliton solutions are given by
When (C=E22−4E2E1+4E1>0) and (E2(E3−1)≠0) or (E1(E3−1)≠0):
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√Ctanh(√C2Z)))+(−6E32−6+12E3)×(d−12(E3−1)(E2+√Ctanh(√C2Z)))2, | (2.72) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√Ccoth(√C2Z)))+(−6E32−6+12E3)×(d−12(E3−1)(E2+√Ccoth(√C2Z)))2, | (2.73) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√C(tanh(√CZ)±isech(√CZ))))+(−6E32−6+12E3)×(d−12(E3−1)(E2+√C(tanh(√CZ)±isech(√CZ))))2, | (2.74) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√C(coth(√CZ)±csch(√CZ))))+(−6E32−6+12E3)×(d−12(E3−1)(E2+√C(coth(√CZ)±csch(√CZ))))2. | (2.75) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−14(E3−1)(2E2+√C(tanh(√C4Z)±coth(√C4Z))))+(−6E32−6+12E3)(d−14(E3−1)(2E2+√C(tanh(√C4Z)±coth(√C4Z))))2, | (2.76) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+±√C(A2+B2)−A√Ccosh(√CZ)Asinh(√CZ)+B))+(−6E32−6+12E3)(d+12(E3−1)(−E2+±√C(A2+B2)−A√Ccosh(√CZ)Asinh(√CZ)+B))2, | (2.77) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+±√C(A2+B2)+A√Ccosh(√CZ)Asinh(√CZ)+B))+(−6E32−6+12E3)(d+12(E3−1)(−E2+±√C(A2+B2)+A√Ccosh(√CZ)Asinh(√CZ)+B))2, | (2.78) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1cosh(√C2Z)√Csinh(√C2Z)−E2cosh(√C2Z))+(−6E32−6+12E3)×(d+2E1cosh(√C2Z)√Csinh(√C2Z)−E2cosh(√C2Z))2, | (2.79) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sinh(√C2Z)√Ccosh(√C2Z)−E2sinh(√C2Z))+(−6E32−6+12E3)×(d+2E1sinh(√C2Z)√Ccosh(√C2Z)−E2sinh(√C2Z))2, | (2.80) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1cosh(√CZ)√Csinh(√CZ)−E2cosh(√CZ)±i√C)+(−6E32−6+12E3)(d+2E1cosh(√CZ)√Csinh(√CZ)−E2cosh(√CZ)±i√C)2, | (2.81) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sinh(√CZ)√Ccosh(√CZ)−E2sinh(√CZ)±i√C)+(−6E32−6+12E3)(d+2E1sinh(√CZ)√Ccosh(√CZ)−E2sinh(√CZ)±i√C)2, | (2.82) |
While A, B are arbitrary real constants and A2+B2>0.
When (C=E22−4E2E1+4E1<0) and (E2(E3−1)≠0) or (E1(E3−1)≠0):
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+√−Ctanh(√−C2Z)))+(−6E32−6+12E3)(d+12(E3−1)(−E2+√−Ctanh(√−C2Z)))2, | (2.83) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√−Ccoth(√−C2Z)))+(−6E32−6+12E3)×(d−12(E3−1)(E2+√−Ccoth(√−C2Z)))2, | (2.84) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))+(−6E32−6+12E3)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))2, | (2.85) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))+(−6E32−6+12E3)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))2, | (2.86) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−12(E3−1)(E2+√−C(cot(√−CZ)±csc(√−CZ))))+(−6E32−6+12E3)(d−12(E3−1)(E2+√−C(cot(√−CZ)±csc(√−CZ))))2, | (2.87) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+14(E3−1)(−2E2+√−C(tan(√−C4Z)−cot(√−C4Z))))+(−6E32−6+12E3)(d+14(E3−1)(−2E2+√−C(tan(√−C4Z)−cot(√−C4Z))))2, | (2.88) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+12(E3−1)(−E2+±√−C(A2−B2)−A√−Ccos(√−CZ)Asin(√−CZ)+B))+(−6E32−6+12E3)(d+12(E3−1)(−E2+±√−C(A2−B2)−A√−Ccos(√−CZ)Asin(√−CZ)+B))2, | (2.89) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−2E1cos(√−C2Z)√−Csin(√−C2Z)+E2cos(√−C2Z))+(−6E32−6+12E3)×(d−2E1cos(√−C2Z)√−Csin(√−C2Z)+E2cos(√−C2Z))2, | (2.90) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sin(√−C2Z)√−Ccos(√−C2Z)−E2sin(√−C2Z))+(−6E32−6+12E3)×(d+2E1sin(√−C2Z)√−Ccos(√−C2Z)−E2sin(√−C2Z))2, | (2.91) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d+2E1sin(√−CZ)√−Ccos(√−CZ)−E2sin(√−CZ)±√−C)+(−6E32−6+12E3)×(d+2E1sin(√−CZ)√−Ccos(√−CZ)−E2sin(√−CZ)±√−C)2, | (2.92) |
While A, B are arbitrary real constants and A2−B2>0.
When E1=0 and E2(E3−1)≠0, we have:
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−E2k(E3−1)(k+cosh(E2Z)−sinh(E2Z)))+(−6E32−6+12E3)×(d−E2k(E3−1)(k+cosh(E2Z)−sinh(E2Z)))2, | (2.93) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−E2(cosh(E2Z)+sinh(E2Z))(E3−1)(k+cosh(E2Z)+sinh(E2Z)))+(−6E32−6+12E3)×(d−E2(cosh(E2Z)+sinh(E2Z))(E3−1)(k+cosh(E2Z)+sinh(E2Z)))2, | (2.94) |
U(Z)=−(6E3−6)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2+(−E2(6E3−6)+12E32d−24E3d+12d)(d−1(E3−1)Z+C)+(−6E32−6+12E3)(d−1(E3−1)Z+C)2, | (2.95) |
Set C
c=√4E1E3−4E1+1−E22,a−2=−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4,a−1=−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3,a1=a2=0,a0=−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2. |
Thus, the model's soliton solutions are given by
When (C=E22−4E2E1+4E1>0) and (E2(E3−1)≠0) or (E1(E3−1)≠0):
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−12(E3−1)(E2+√Ctanh(√C2Z)))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−12(E3−1)(E2+√Ctanh(√C2Z)))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.96) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−12(E3−1)(E2+√Ccoth(√C2Z)))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−12(E3−1)(E2+√Ccoth(√C2Z)))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.97) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−12(E3−1)(E2+√C(tanh(√CZ)±isech(√CZ))))−2+(−(−12E3d+12d+6E2)×E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−12(E3−1)(E2+√C×(tanh(√CZ)±isech(√CZ))))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.98) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−12(E3−1)(E2+√C(coth(√CZ)±csch(√CZ))))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−12(E3−1)(E2+√C(coth(√CZ)±csch(√CZ))))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.99) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−14(E3−1)(2E2+√C(tanh(√C4Z)±coth(√C4Z))))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−14(E3−1)(2E2+√C(tanh(√C4Z)±coth(√C4Z))))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.100) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+12(E3−1)(−E2+±√C(A2+B2)−A√Ccosh(√CZ)Asinh(√CZ)+B))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+12(E3−1)(−E2+±√C(A2+B2)−A√Ccosh(√CZ)Asinh(√CZ)+B))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.101) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+12(E3−1)(−E2+±√C(A2+B2)+A√Ccosh(√CZ)Asinh(√CZ)+B))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+12(E3−1)(−E2+±√C(A2+B2)+A√Ccosh(√CZ)Asinh(√CZ)+B))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.102) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+2E1cosh(√C2Z)√Csinh(√C2Z)−E2cosh(√C2Z))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+2E1cosh(√C2Z)√Csinh(√C2Z)−E2cosh(√C2Z))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.103) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+2E1sinh(√C2Z)√Ccosh(√C2Z)−E2sinh(√C2Z))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+2E1sinh(√C2Z)√Ccosh(√C2Z)−E2sinh(√C2Z))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.104) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+2E1cosh(√CZ)√Csinh(√CZ)−E2cosh(√CZ)±i√C)−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)×(d+2E1cosh(√CZ)√Csinh(√CZ)−E2cosh(√CZ)±i√C)−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.105) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+2E1sinh(√CZ)√Ccosh(√CZ)−E2sinh(√CZ)±i√C)−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+2E1sinh(√CZ)√Ccosh(√CZ)−E2sinh(√CZ)±i√C)−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.106) |
While A, B are arbitrary real constants and A2+B2>0.
When (C=E22−4E2E1+4E1<0) and (E2(E3−1)≠0) or (E1(E3−1)≠0):
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+12(E3−1)(−E2+√−Ctanh(√−C2Z)))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+12(E3−1)(−E2+√−C×tanh(√−C2Z)))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.107) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−12(E3−1)(E2+√−Ccoth(√−C2Z)))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−12(E3−1)(E2+√−Ccoth(√−C2Z)))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.108) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+12(E3−1)(−E2+√−C(tan(√−CZ)±sec(√−CZ))))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+12(E3−1)×(−E2+√−C(tan(√−CZ)±sec(√−CZ))))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.109) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−12(E3−1)(E2+√−C(cot(√−CZ)±csc(√−CZ))))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−12(E3−1)(E2+√−C(cot(√−CZ)±csc(√−CZ))))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.110) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+14(E3−1)(−2E2+√−C(tan(√−C4Z)−cot(√−C4Z))))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+14(E3−1)×(−2E2+√−C(tan(√−C4Z)−cot(√−C4Z))))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.111) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+12(E3−1)(−E2+±√−C(A2−B2)−A√−Ccos(√−CZ)Asin(√−CZ)+B))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)×(d+12(E3−1)(−E2+±√−C(A2−B2)−A√−Ccos(√−CZ)Asin(√−CZ)+B))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.112) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+12(E3−1)(−E2+±√−C(A2−B2)+A√−Ccos(√−CZ)Asin(√−CZ)+B))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)×(d+12(E3−1)(−E2+±√−C(A2−B2)+A√−Ccos(√−CZ)Asin(√−CZ)+B))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.113) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−2E1cos(√−C2Z)√−Csin(√−C2Z)+E2cos(√−C2Z))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−2E1cos(√−C2Z)√−Csin(√−C2Z)+E2cos(√−C2Z))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.114) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+2E1sin(√−C2Z)√−Ccos(√−C2Z)−E2sin(√−C2Z))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+2E1sin(√−C2Z)√−Ccos(√−C2Z)−E2sin(√−C2Z))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.115) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d+2E1sin(√−CZ)√−Ccos(√−CZ)−E2sin(√−CZ)±√−C)−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d+2E1sin(√−CZ)√−Ccos(√−CZ)−E2sin(√−CZ)±√−C)−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.116) |
while A, B are arbitrary real constants and A2−B2>0.
When E1=0 and E2(E3−1)≠0, we have:
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−E2k(E3−1)(k+cosh(E2Z)−sinh(E2Z)))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)×(d−E2k(E3−1)(k+cosh(E2Z)−sinh(E2Z)))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.117) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−E2(cosh(E2Z)+sinh(E2Z))(E3−1)(k+cosh(E2Z)+sinh(E2Z)))−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−E2(cosh(E2Z)+sinh(E2Z))(E3−1)(k+cosh(E2Z)+sinh(E2Z)))−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.118) |
U(Z)=(−6E12−(−12E2d−12d2+12E3d2)E1−6E22d2−(−12E3d3+12d3)E2−6d4−6E32d4+12E3d4)(d−1(E3−1)Z+C)−2+(−(−12E3d+12d+6E2)E1+6E22d−(18E3d2−18d2)E2+12E32d3−24E3d3+12d3)(d−1(E3−1)Z+C)−1−(2E3−2)E1−E22−(−6E3d+6d)E2−6E32d2+12E3d2−6d2, | (2.119) |
This section explains the constructed solutions through some distinct plots in two, three, and contour graphs under some special values of above-mentioned parameters. The following Figures 1–5 show cone, dark, solitary, bright, and singular dark waves respectively.
Here, the solutions' physical interpretation and novelty are shown for demonstrating the research paper's contribution. This process is given in the following items:
● Employed schemes:
Two computational schemes (ESE and NRE methods) have been employed in the nonlinear IPB model for constructing novel nonlinear soliton lattice wave solutions. These methods have not been applied to this model before. Both schemes depend on different forms of well-known Riccati equation that helps formulate their solutions in various forms such as hyperbolic, trigonometric, exponential and rational forms. Additionally, Their obtained solutions show the dynamical and physical characterizations of the shallow water waves under gravity.
● Obtained results:
The obtained schemes have obtained many different forms of solutions that cover many previous published solutions through using some different schemes. All our solutions are completely different and novel that have been obtained in [25,26,27,28,29,30].
● Shown figures :
Some solutions have been explained through some different figures in various forms such as contour, two, three-dimensional plots. These solutions show many novel properties of the shallow water waves under gravity, such as cone, solitary, dark, bright and periodic features. These figures have been plotted using a particular value of each show-parameters in the solutions.
This article has studied the nonlinear IPB model along with two recent analytical schemes. Many novel solutions have been obtained and demonstrated through some magnificent figures to show many undiscovered features of the considered model. The novelty and paper's contribution are investigated. The used schemes' performance shows their effectiveness and the ability to handle many nonlinear evolution equations.
The work was supported by the Natural Science Foundation of Anhui Province (Project No. 1908085QA09) and the University Natural Science Research Project of Anhui Province (Project No. KJ2019A0591, KJ2020ZD008). We greatly thank Taif University for providing fund for this work too through Taif University Researchers Supporting Project number (TURSP-2020/52), Taif University, Taif, Saudi Arabia.
There is no conflict of interest.
[1] |
D. D. Holm, J. E. Marsden, T. S. Ratiu, The euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1–81. doi: 10.1006/aima.1998.1721. doi: 10.1006/aima.1998.1721
![]() |
[2] |
V. I. Sbitnev, Bohmian trajectories and the path integral paradigm: Complexified lagrangian mechanics, Int. J. Bifurcat. Chaos, 19 (2009), 2335–2346. doi: 10.1142/S0218127409024104. doi: 10.1142/S0218127409024104
![]() |
[3] |
M. M. Khater, M. Inc, K. Nisar, R. A. Attia, Multi-solitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes, Ain Shams Eng. J., 12 (2021), 3031–3041. doi: 10.1016/j.asej.2020.10.029. doi: 10.1016/j.asej.2020.10.029
![]() |
[4] |
M. M. Khater, M. S. Mohamed, R. A. Attia, On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation, Chaos Soliton. Fract., 144 (2021), 110676. doi: 10.1016/j.chaos.2021.110676. doi: 10.1016/j.chaos.2021.110676
![]() |
[5] | M. M. Khater, A. Mousa, M. El-Shorbagy, R. A. Attia, Analytical and semi-analytical solutions for Phi-four equation through three recent schemes, Results Phys., 2021, 103954. doi: 10.1016/j.rinp.2021.103954. |
[6] |
M. M. Khater, A. E. S. Ahmed, M. El-Shorbagy, Abundant stable computational solutions of Atangana-Baleanu fractional nonlinear HIV-1 infection of CD4+ T-cells of immunodeficiency syndrome, Results Phys., 144 (2021), 103890. doi: 10.1016/j.rinp.2021.103890. doi: 10.1016/j.rinp.2021.103890
![]() |
[7] |
M. M. Khater, S. Anwar, K. U. Tariq, M. S. Mohamed, Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method, AIP Adv., 11 (2021), 025130. doi: 10.1063/5.0038671. doi: 10.1063/5.0038671
![]() |
[8] |
M. M. Khater, R. A. Attia, A. Bekir, D. Lu, Optical soliton structure of the sub-10-fs-pulse propagation model, J. Opt., 50 (2021), 109–119. doi: 10.1007/s12596-020-00667-7. doi: 10.1007/s12596-020-00667-7
![]() |
[9] |
Y. Chu, M. M. Khater, Y. Hamed, Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model, AIP Adv., 11 (2021), 015223. doi: 10.1063/5.0036261. doi: 10.1063/5.0036261
![]() |
[10] |
R. A. Attia, D. Baleanu, D. Lu, M. M. Khater, E. S. Ahmed, Computational and numerical simulations for the deoxyribonucleic acid (DNA) model, Discrete Cont. Dyn-S., 14 (2021), 3459–3478. doi: 10.3934/dcdss.2021018. doi: 10.3934/dcdss.2021018
![]() |
[11] |
M. M. Khater, A. Bekir, D. Lu, R. A. Attia, Analytical and semi-analytical solutions for time-fractional Cahn-Allen equation, Math. Method. Appl. Sci., 44 (2021), 2682–2691. doi: 10.1002/mma.6951. doi: 10.1002/mma.6951
![]() |
[12] |
A. Saha, K. K. Ali, H. Rezazadeh, Y. Ghatani, Analytical optical pulses and bifurcation analysis for the traveling optical pulses of the hyperbolic nonlinear Schrödinger equation, Opt. Quant. Electron., 53 (2021), 1–19. doi: 10.1007/s11082-021-02787-1. doi: 10.1007/s11082-021-02787-1
![]() |
[13] |
H. Rezazadeh, M. Odabasi, K. U. Tariq, R. Abazari, H. M. Baskonus, On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients, Chinese J. Phys., 72 (2021), 403–414. doi: 10.1016/j.cjph.2021.01.012. doi: 10.1016/j.cjph.2021.01.012
![]() |
[14] |
F. Tchier, A. I. Aliyu, A. Yusuf, Dynamics of solitons to the ill-posed Boussinesq equation, Eur. Phys. J. Plus, 132 (2017), 1–9. doi: 10.1140/epjp/i2017-11430-0. doi: 10.1140/epjp/i2017-11430-0
![]() |
[15] |
S. Duran, M. Askin, T. A. Sulaiman, New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science, Int. J. Opt. Control (IJOCTA), 7 (2017), 240–247. doi: 10.11121/ijocta.01.2017.00495. doi: 10.11121/ijocta.01.2017.00495
![]() |
[16] | P. Daripa, W. Hua, A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: Filtering and regularization techniques, Appl. Math. Comput., 101 (1999), 159–207. doi; 10.1016/S0096-3003(98)10070-X. |
[17] |
S. Bibi, N. Ahmed, U. Khan, S. T. Mohyud-Din, Auxiliary equation method for ill-posed Boussinesq equation, Phys. Scripta, 94 (2019), 085213. doi: 10.1088/1402-4896/ab1951. doi: 10.1088/1402-4896/ab1951
![]() |
[18] |
C. Park, M. M. Khater, A. H. Abdel-Aty, R. A. Attia, H. Rezazadeh, A. Zidan, et al., Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic, Alex. Eng. J., 59 (2020), 1425–1433. doi: 10.1016/j.aej.2020.03.046. doi: 10.1016/j.aej.2020.03.046
![]() |
[19] |
M. M. Khater, R. A. Attia, A. H. Abdel-Aty, W. Alharbi, D. Lu, Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms, Chaos Soliton. Fract., 136 (2020), 109824. doi: 10.1016/j.chaos.2020.109824. doi: 10.1016/j.chaos.2020.109824
![]() |
[20] |
C. Park, M. M. Khater, A. H. Abdel-Aty, R. A. Attia, D. Lu, On new computational and numerical solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering, Alex. Eng. J., 59 (2020), 1099–1105. doi: 10.1016/j.aej.2019.12.043. doi: 10.1016/j.aej.2019.12.043
![]() |
[21] |
M. M. Khater, R. A. Attia, A. H. Abdel-Aty, M. Abdou, H. Eleuch, D. Lu, Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-kerr nonlinear term, Results Phys., 16 (2020), 103000. doi: 10.1016/j.rinp.2020.103000. doi: 10.1016/j.rinp.2020.103000
![]() |
[22] |
D. Lu, M. Osman, M. M. Khater, R. A. Attia, D. Baleanu, Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X = Mo, Cu)) based on ternary alloys, Physica A, 537 (2020), 122634. doi: 10.1016/j.physa.2019.122634. doi: 10.1016/j.physa.2019.122634
![]() |
[23] |
A. T. Ali, M. M. Khater, R. A. Attia, A. H. Abdel-Aty, D. Lu, Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system, Chaos Soliton. Fract., 131 (2020), 109473. doi: 10.1016/j.chaos.2019.109473. doi: 10.1016/j.chaos.2019.109473
![]() |
[24] |
A. H. Abdel-Aty, M. M. Khater, H. Dutta, J. Bouslimi, M. Omri, Computational solutions of the HIV-1 infection of CD4+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy, Chaos Soliton. Fract., 139 (2020), 110092. doi: 10.1016/j.chaos.2020.110092. doi: 10.1016/j.chaos.2020.110092
![]() |
[25] |
B. Gao, H. Tian, Symmetry reductions and exact solutions to the ill-posed Boussinesq equation, Int. J. Nonlin. Mech., 72 (2015), 80–83. doi: 10.1016/j.ijnonlinmec.2015.03.004. doi: 10.1016/j.ijnonlinmec.2015.03.004
![]() |
[26] |
F. Wang, H. Cheng, J. Si, Response solution to ill-posed Boussinesq equation with quasi-periodic forcing of Liouvillean frequency, J. Nonlinear Sci., 30 (2021), 657–710. doi: 10.1007/s00332-019-09587-8. doi: 10.1007/s00332-019-09587-8
![]() |
[27] |
E. Yaşar, S. San, Y. S. Özkan, Nonlinear self adjointness, conservation laws and exact solutions of ill-posed Boussinesq equation, Open Phys., 14 (2016), 37–43. doi: 10.1515/phys-2016-0007. doi: 10.1515/phys-2016-0007
![]() |
[28] |
N. Kishimoto, Sharp local well-posedness for the "good" Boussinesq equation, J. Differ. Equations, 254 (2013), 2393–2433. doi: 10.1016/j.jde.2012.12.008. doi: 10.1016/j.jde.2012.12.008
![]() |
[29] |
R. Temam, J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations, J. Atmos. Sci., 60 (2003), 2647–2660. doi: 10.1175/1520-0469(2003)060<2647:obcftp>2.0.co;2. doi: 10.1175/1520-0469(2003)060<2647:obcftp>2.0.co;2
![]() |
[30] |
H. Cheng, R. de la Llave, Stable manifolds to bounded solutions in possibly ill-posed PDEs, J. Differ. Equations, 268 (2020), 4830–4899. doi: 10.1016/j.jde.2019.10.042. doi: 10.1016/j.jde.2019.10.042
![]() |
1. | Mostafa M. A. Khater, Lax representation and bi-Hamiltonian structure of nonlinear Qiao model, 2022, 36, 0217-9849, 10.1142/S0217984921506144 | |
2. | Li Qin, Jing Liu, Fuzhang Wang, Qian Lijuan, Mostafa M.A. Khater, Abundant stable wave structures for the nonlinear propagation of dislocations in crystals, phase differences across Josephson junctions, 2022, 24680133, 10.1016/j.joes.2022.05.011 | |
3. | M. Higazy, Shabbir Muhammad, A. Al-Ghamdi, Mostafa M.A. Khater, Computational wave solutions of some nonlinear evolution equations, 2022, 24680133, 10.1016/j.joes.2022.01.007 | |
4. | Mostafa M. A. Khater, Computational Traveling Wave Solutions of the Nonlinear Rangwala–Rao Model Arising in Electric Field, 2022, 10, 2227-7390, 4658, 10.3390/math10244658 | |
5. | Yangyang Yu, Fuzhang Wang, Shabbir Muhammad, Omar A. Al-Hartomy, M. Higazy, Mostafa M.A. Khater, Localized and coherent waves’ propagation in a nonlinear dispersive medium: Computational simulations, 2022, 24680133, 10.1016/j.joes.2022.05.002 | |
6. | Mostafa M.A. Khater, Nonparaxial pulse propagation in a planar waveguide with Kerr–like and quintic nonlinearities; computational simulations, 2022, 157, 09600779, 111970, 10.1016/j.chaos.2022.111970 | |
7. | Maged Faihan Alotaibi, Mohamed Omri, E.M. Khalil, S. Abdel-Khalek, Jamel Bouslimi, Mostafa M.A. Khater, Abundant solitary and semi-analytical wave solutions of nonlinear shallow water wave regime model, 2022, 24680133, 10.1016/j.joes.2022.02.005 | |
8. | Mostafa M.A. Khater, Shabbir Muhammad, A. Al-Ghamdi, M. Higazy, Abundant wave structures of the fractional Benjamin-Ono equation through two computational techniques, 2022, 24680133, 10.1016/j.joes.2022.01.009 | |
9. | Mostafa M.A. Khater, Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation, 2023, 44, 22113797, 106193, 10.1016/j.rinp.2022.106193 | |
10. | Fuzhang Wang, Samir A. Salama, Mostafa M.A. Khater, Optical wave solutions of perturbed time-fractional nonlinear Schrödinger equation, 2022, 24680133, 10.1016/j.joes.2022.03.014 | |
11. | Mostafa M. A. Khater, Abundant accurate solitonic water and ionic liquid wave structures of the nanoparticle hybrid system, 2022, 41, 2238-3603, 10.1007/s40314-022-01884-5 | |
12. | Mostafa M.A. Khater, Computational simulations of the cubic-quintic nonlinear Helmholtz model, 2022, 24680133, 10.1016/j.joes.2022.05.019 | |
13. | Raghda A. M. Attia, Jian Tian, Dianchen Lu, José Francisco Gómez Aguilar, Mostafa M. A. Khater, Unstable novel and accurate soliton wave solutions of the nonlinear biological population model, 2022, 29, 2576-5299, 19, 10.1080/25765299.2021.2024652 | |
14. | Mostafa M.A. Khater, Two-component plasma and electron trapping’s influence on the potential of a solitary electrostatic wave with the dust-ion-acoustic speed, 2022, 24680133, 10.1016/j.joes.2022.02.006 | |
15. | Qura Tul Ain, Muhammad Nadeem, Shazia Karim, Ali Akgül, Fahd Jarad, Optimal variational iteration method for parametric boundary value problem, 2022, 7, 2473-6988, 16649, 10.3934/math.2022912 | |
16. | A. M. Algelany, M. A. El-Shorbagy, Mostafa M. A. Khater, Dimensionless Zakharov equation; high-frequency Langmuir waves and low-frequency ion-acoustic waves’ interaction, 2022, 12, 2158-3226, 125208, 10.1063/5.0132760 | |
17. | Usman Younas, T.A. Sulaiman, Jingli Ren, A. Yusuf, Lump interaction phenomena to the nonlinear ill-posed Boussinesq dynamical wave equation, 2022, 178, 03930440, 104586, 10.1016/j.geomphys.2022.104586 | |
18. | Fuzhang Wang, Shabbir Muhammad, A. Al-Ghamdi, M. Higazy, Mostafa M.A. Khater, Novel computational technique; the second positive member in a new completely integrable hierarchy, 2022, 24680133, 10.1016/j.joes.2022.03.026 | |
19. | Yingzi Jiang, Fuzhang Wang, Mostafa M.A. Khater, Abdullah G. Al-Sehemi, Sami Ullah, Omar A. Al-Hartomy, M. Higazy, Abundant novel nematicon soliton wave solutions in liquid crystals with Kerr law nonlinearity, 2022, 24680133, 10.1016/j.joes.2022.04.006 | |
20. | Mostafa M. A. Khater, In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-03902-9 | |
21. | Tooba Mirza, R. Nawaz, Mohamed Abbas, Scattering at the interface of free water and submerged elastic surface, 2024, 10, 26668181, 100697, 10.1016/j.padiff.2024.100697 | |
22. | Emmanuel Yomba, Method of searching for a W-shaped like soliton combined with other families of solitons in coupled equations: application to magneto-optic waveguides with quadratic-cubic nonlinearity, 2024, 56, 1572-817X, 10.1007/s11082-023-06218-1 | |
23. | H. S. Alayachi, Mahmoud A. E. Abdelrahman, Kamel Mohamed, Finite-volume two-step scheme for solving the shear shallow water model, 2024, 9, 2473-6988, 20118, 10.3934/math.2024980 |