[1]
|
W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 52. https://doi.org/10.1007/s11082-019-2162-8 doi: 10.1007/s11082-019-2162-8
|
[2]
|
C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee-Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
|
[3]
|
C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, On the exact soliton solutions and different wave structures to the modified Schrödinger's equation, Results Phys., 54 (2023), 107037. https://doi.org/10.1016/j.rinp.2023.107037 doi: 10.1016/j.rinp.2023.107037
|
[4]
|
C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrödinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
|
[5]
|
M. Alqudah, S. Mukhtar, H. A. Alyousef, S. M. Ismaeel, S. A. El-Tantawy, F. Ghani, Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water, AIMS Math., 9 (2024), 21212–21238. https://doi.org/10.3934/math.20241030 doi: 10.3934/math.20241030
|
[6]
|
M. Ghasemi, High order approximations using spline-based differential quadrature method: implementation to the multi-dimensional PDEs, Appl. Math. Model., 46 (2017), 63–80. https://doi.org/10.1016/j.apm.2017.01.052 doi: 10.1016/j.apm.2017.01.052
|
[7]
|
N. Perrone, R. Kao, A general finite difference method for arbitrary meshes, Comput. Struct., 5 (1975), 45–57. https://doi.org/10.1016/0045-7949(75)90018-8 doi: 10.1016/0045-7949(75)90018-8
|
[8]
|
S. Mahmood, R. Shah, H. Khan, M. Arif, Laplace adomian decomposition method for multi dimensional time fractional model of Navier-Stokes equation, Symmetry, 11 (2019), 149. https://doi.org/10.3390/sym11020149 doi: 10.3390/sym11020149
|
[9]
|
M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Phys. D, 211 (2005), 1–8. https://doi.org/10.1016/j.physd.2005.08.002 doi: 10.1016/j.physd.2005.08.002
|
[10]
|
O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The finite element method: its basis and fundamentals, 6 Eds., Elsevier, 2005.
|
[11]
|
M. M. A. Hammad, R. Shah, B. M. Alotaibi, M. Alotiby, C. G. L. Tiofack, A. W. Alrowaily, et al., On the modified versions of (G′G)-expansion technique for analyzing the fractional coupled Higgs system, AIP Adv., 13 (2023), 105131. https://doi.org/10.1063/5.0167916 doi: 10.1063/5.0167916
|
[12]
|
Y. Chen, B. Li, H. Zhang, Generalized Riccati equation expansion method and its application to the Bogoyavlenskii's generalized breaking soliton equation, Chin. Phys., 12 (2003), 940. https://doi.org/10.1088/1009-1963/12/9/303 doi: 10.1088/1009-1963/12/9/303
|
[13]
|
E. Yusufoǧlu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, Int. J. Comput. Math., 83 (2006), 915–924. https://doi.org/10.1080/00207160601138756 doi: 10.1080/00207160601138756
|
[14]
|
H. Liu, T. Zhang, A note on the improved tan(ϕ(ξ)/2)-expansion method, Optik, 131 (2017), 273–278. https://doi.org/10.1016/j.ijleo.2016.11.029 doi: 10.1016/j.ijleo.2016.11.029
|
[15]
|
M. Kaplan, A. Bekir, A. Akbulut, E. Aksoy, The modified simple equation method for nonlinear fractional differential equations, Rom. J. Phys., 60 (2015), 1374–1383.
|
[16]
|
M. Guo, H. Dong, J. Liu, H. Yang, The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method, Nonlinear Anal., 24 (2019), 1–19. https://doi.org/10.15388/NA.2019.1.1 doi: 10.15388/NA.2019.1.1
|
[17]
|
S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
|
[18]
|
M. Lei, H. Liao, S. Wang, H. Zhou, J. Zhu, H. Wan, et al., Electro-sorting create heterogeneity: constructing a multifunctional Janus film with integrated compositional and microstructural gradients for guided bone regeneration, Adv. Sci., 11 (2024), 2307606. https://doi.org/10.1002/advs.202307606 doi: 10.1002/advs.202307606
|
[19]
|
R. Ali, M. M. Alam, S. Barak, Exploring chaotic behavior of optical solitons in complex structured conformable perturbed Radhakrishnan-Kundu-Lakshmanan model, Phys. Scr., 99 (2024), 095209. https://doi.org/10.1088/1402-4896/ad67b1 doi: 10.1088/1402-4896/ad67b1
|
[20]
|
R. Ali, A. S. Hendy, M. R. Ali, A. M. Hassan, F. A. Awwad, E. A. Ismail, Exploring propagating soliton solutions for the fractional Kudryashov-Sinelshchikov equation in a mixture of liquid-gas bubbles under the consideration of heat transfer and viscosity, Fractal Fract., 7 (2023), 773. https://doi.org/10.3390/fractalfract7110773 doi: 10.3390/fractalfract7110773
|
[21]
|
X. Xie, Y. Gao, F. Hou, T. Cheng, A. Hao, H. Qin, Fluid inverse volumetric modeling and applications from surface motion, IEEE Trans. Vis. Comput. Gr., 2024, 1–17. https://doi.org/10.1109/TVCG.2024.3370551
|
[22]
|
J. Hong, L. Gui, J. Cao, Analysis and experimental verification of the tangential force effect on electromagnetic vibration of PM motor, IEEE Trans. Energy Conver., 38 (2023), 1893–1902. https://doi.org/10.1109/TEC.2023.3241082 doi: 10.1109/TEC.2023.3241082
|
[23]
|
S. Y. Arafat, S. M. Rayhanul Islam, Bifurcation analysis and soliton structures of the truncated M-fractional Kuralay-Ⅱ equation with two analytical techniques, Alex. Eng. J., 105 (2024), 70–87. https://doi.org/10.1016/j.aej.2024.06.079 doi: 10.1016/j.aej.2024.06.079
|
[24]
|
G. Zhang, W. Li, M. Yu, H. Huang, Y. Wang, Z. Han, et al., Electric-field-driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues, Adv. Sci., 10 (2023), 2206264. https://doi.org/10.1002/advs.202206264 doi: 10.1002/advs.202206264
|
[25]
|
S. M. Rayhanul Islam, Bifurcation analysis and soliton solutions to the doubly dispersive equation in elastic inhomogeneous Murnaghans rod, Sci. Rep., 14 (2024), 11428. https://doi.org/10.1038/s41598-024-62113-z doi: 10.1038/s41598-024-62113-z
|
[26]
|
Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrodinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
|
[27]
|
Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
|
[28]
|
Y., Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
|
[29]
|
H. Tian, M. Zhao, J. Liu, Q. Wang, X. Yu, Z. Wang, Dynamic analysis and sliding mode synchronization control of chaotic systems with conditional symmetric fractional-order memristors, Fractal Fract., 8 (2024), 307. https://doi.org/10.3390/fractalfract8060307 doi: 10.3390/fractalfract8060307
|
[30]
|
L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network, IEEE Trans. Cybernetics, 53 (2023), 4015–4028. https://doi.org/10.1109/TCYB.2022.3225106 doi: 10.1109/TCYB.2022.3225106
|
[31]
|
M. Li, T. Wang, F. Chu, Q. Han, Z. Qin, M. J. Zuo, Scaling-basis chirplet transform, IEEE Trans. Ind. Electron., 68 (2021), 8777–8788. https://doi.org/10.1109/TIE.2020.3013537 doi: 10.1109/TIE.2020.3013537
|
[32]
|
R. Ali, S. Barak, A. Altalbe, Analytical study of soliton dynamics in the realm of fractional extended shallow water wave equations, Phys. Scr., 99 (2024), 065235. https://doi.org/10.1088/1402-4896/ad4784 doi: 10.1088/1402-4896/ad4784
|
[33]
|
A. Iftikhar, A. Ghafoor, T. Zubair, S. Firdous, S. T. Mohyud-Din, Solutions of (2+1) dimensional generalized KdV, Sin Gordon and Landau-Ginzburg-Higgs equations, Sci. Res. Essays, 8 (2013), 1349–1359.
|
[34]
|
M. M. Bhatti, D. Q. Lu, An application of Nwogu's Boussinesq model to analyze the head-on collision process between hydroelastic solitary waves, Open Phys., 17 (2019), 177–191. https://doi.org/10.1515/phys-2019-0018 doi: 10.1515/phys-2019-0018
|
[35]
|
J. H., He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
|
[36]
|
S. Behera, N. H. Aljahdaly, Nonlinear evolution equations and their traveling wave solutions in fluid media by modified analytical method, Pramana, 97 (2023), 130. https://doi.org/10.1007/s12043-023-02602-4 doi: 10.1007/s12043-023-02602-4
|
[37]
|
H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G′/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
|
[38]
|
W. Thadee, A. Chankaew, S. Phoosree, Effects of wave solutions on shallow-water equation, optical-fibre equation and electric-circuit equation, Maejo Int. J. Sci. Tech., 16 (2022), 262–274.
|
[39]
|
A. R. Alharbi, M. B. Almatrafi, Riccati-Bernoulli sub-ODE approach on the partial differential equations and applications, Int. J. Math. Comput. Sci., 15 (2020), 367–388.
|
[40]
|
M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.1007/s11082-022-03819-0 doi: 10.1007/s11082-022-03819-0
|
[41]
|
J. F. Alzaidy, Fractional sub-equation method and its applications to the space-time fractional differential equations in mathematical physics, Br. J. Math. Comput. Sci., 3 (2013), 153–163.
|
[42]
|
M. M. Al-Sawalha, H. Yasmin, R. Shah, A. H. Ganie, K. Moaddy, Unraveling the dynamics of singular stochastic solitons in stochastic fractional Kuramoto-Sivashinsky equation, Fractal Fract., 7 (2023), 753. https://doi.org/10.3390/fractalfract7100753 doi: 10.3390/fractalfract7100753
|
[43]
|
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
|
[44]
|
M. Aldandani, A. A. Altherwi, M. M. Abushaega, Propagation patterns of dromion and other solitons in nonlinear Phi-Four (ϕ4) equation, AIMS Math., 9 (2024), 19786–19811. https://doi.org/10.3934/math.2024966 doi: 10.3934/math.2024966
|
[45]
|
N. Iqbal, M. B. Riaz, M. Alesemi, T. S. Hassan, A. M. Mahnashi, A. Shafee, Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation, AIMS Math., 9 (2024), 16666–16686. https://doi.org/10.3934/math.2024808 doi: 10.3934/math.2024808
|
[46]
|
K. J. Wang, F. Shi, Multi-soliton solutions and soliton molecules of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for the incompressible fluid, Europhys. Lett., 145 (2024), 42001. https://doi.org/10.1209/0295-5075/ad219d doi: 10.1209/0295-5075/ad219d
|
[47]
|
W. Alhejaili, E. Az-Zo'bi, R. Shah, S. A. El-Tantawy, On the analytical soliton approximations to fractional forced Korteweg-de Vries equation arising in fluids and plasmas using two novel techniques, Commun. Theor. Phys., 76 (2024), 085001. https://doi.org/10.1088/1572-9494/ad53bc doi: 10.1088/1572-9494/ad53bc
|
[48]
|
S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
|
[49]
|
S. Noor, W. Albalawi, R. Shah, A. Shafee, S. M. Ismaeel, S. A. El-Tantawy, A comparative analytical investigation for some linear and nonlinear time-fractional partial differential equations in the framework of the Aboodh transformation, Front. Phys., 12 (2024) 1374049. https://doi.org/10.3389/fphy.2024.1374049 doi: 10.3389/fphy.2024.1374049
|
[50]
|
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
|
[51]
|
S. Alshammari, K. Moaddy, R. Shah, M. Alshammari, Z. Alsheekhhussain, M. M. Al-Sawalha, et al., Analysis of solitary wave solutions in the fractional-order Kundu-Eckhaus system, Sci. Rep., 14 (2024), 3688. https://doi.org/10.1038/s41598-024-53330-7 doi: 10.1038/s41598-024-53330-7
|
[52]
|
C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation, Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298 doi: 10.1016/j.rinp.2023.107298
|
[53]
|
X. Xi, J. Li, Z. Wang, H. Tian, R. Yang, The effect of high-order interactions on the functional brain networks of boys with ADHD, Eur. Phys. J. Spec. Top., 233 (2024), 817–829. https://doi.org/10.1140/epjs/s11734-024-01161-y doi: 10.1140/epjs/s11734-024-01161-y
|
[54]
|
Z. Wang, M. Chen, X. Xi, H. Tian, R. Yang, Multi-chimera states in a higher order network of FitzHugh-Nagumo oscillators, Eur. Phys. J. Spec. Top., 233 (2024), 779–786. https://doi.org/10.1140/epjs/s11734-024-01143-0 doi: 10.1140/epjs/s11734-024-01143-0
|
[55]
|
M. Lakshmanan, Continuum spin system as an exactly solvable dynamical system, Phys. Lett. A, 61 (1977), 53–54. https://doi.org/10.1016/0375-9601(77)90262-6 doi: 10.1016/0375-9601(77)90262-6
|
[56]
|
V. E. Zakharov, L. A. Takhtadzhyan, Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet, Theor. Math. Phys., 38 (1979), 17–23.
|
[57]
|
Z. Sagidullayeva, G. Nugmanova, R. Myrzakulov, N. Serikbayev, Integrable Kuralay equations: geometry, solutions and generalizations, Symmetry, 14 (2022), 1374. https://doi.org/10.3390/sym14071374 doi: 10.3390/sym14071374
|
[58]
|
W. A. Faridi, M. A. Bakar, Z. Myrzakulova, R. Myrzakulov, A. Akgul, S. M. El Din, The formation of solitary wave solutions and their propagation for Kuralay equation, Results Phys., 52 (2023), 106774. https://doi.org/10.1016/j.rinp.2023.106774 doi: 10.1016/j.rinp.2023.106774
|
[59]
|
T. Mathanaranjan, Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation, Optik, 290 (2023), 171266. https://doi.org/10.1016/j.ijleo.2023.171266 doi: 10.1016/j.ijleo.2023.171266
|
[60]
|
A. Zafar, M. Raheel, M. R. Ali, Z. Myrzakulova, A. Bekir, R. Myrzakulov, Exact solutions of M-fractional Kuralay equation via three analytical schemes, Symmetry, 15 (2023), 1862. https://doi.org/10.3390/sym15101862 doi: 10.3390/sym15101862
|
[61]
|
A. Farooq, W. X. Ma, M. I. Khan, Exploring exact solitary wave solutions of Kuralay-Ⅱ equation based on the truncated M-fractional derivative using the Jacobi elliptic function expansion method, Opt. Quant. Electron., 56 (2024), 1105. https://doi.org/10.1007/s11082-024-06841-6 doi: 10.1007/s11082-024-06841-6
|
[62]
|
Y. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable Kairat-Ⅱ and Kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
|