Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Optical fractals and Hump soliton structures in integrable Kuralay-Ⅱ system

  • Received: 08 August 2024 Revised: 30 August 2024 Accepted: 09 September 2024 Published: 27 September 2024
  • MSC : 34G20, 35A20, 35A22, 35R11

  • The integrable Kuralay-Ⅱ system (K-IIS) plays a significant role in discovering unique complex nonlinear wave phenomena that are particularly useful in optics. This system enhances our understanding of the intricate dynamics involved in wave interactions, solitons, and nonlinear effects in optical phenomena. Using the Riccati modified extended simple equation method (RMESEM), the primary objective of this research project was to analytically find and analyze a wide range of new soliton solutions, particularly fractal soliton solutions, in trigonometric, exponential, rational, hyperbolic, and rational-hyperbolic expressions for K-IIS. Some of these solutions displayed a combination of contour, two-dimensional, and three-dimensional visualizations. This clearly demonstrates that the generated solitons solutions are fractals due to the instability produced by periodic-axial perturbation in complex solutions. In contrast, the genuine solutions, within the framework of K-IIS, take the form of hump solitons. This work demonstrates the adaptability of the K-IIS for studying intricate nonlinear phenomena in a wide range of scientific and practical disciplines. The results of this work will eventually significantly influence our comprehension and analysis of nonlinear wave dynamics in related physical systems.

    Citation: Azzh Saad Alshehry, Safyan Mukhtar, Ali M. Mahnashi. Optical fractals and Hump soliton structures in integrable Kuralay-Ⅱ system[J]. AIMS Mathematics, 2024, 9(10): 28058-28078. doi: 10.3934/math.20241361

    Related Papers:

    [1] Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974
    [2] Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685
    [3] Minghui Zhang, Jianbin Xiao, Mingliang Fang . Entire solutions for several Fermat type differential difference equations. AIMS Mathematics, 2022, 7(7): 11597-11613. doi: 10.3934/math.2022646
    [4] Zhenguang Gao, Lingyun Gao, Manli Liu . Entire solutions of two certain types of quadratic trinomial q-difference differential equations. AIMS Mathematics, 2023, 8(11): 27659-27669. doi: 10.3934/math.20231415
    [5] Wenju Tang, Keyu Zhang, Hongyan Xu . Results on the solutions of several second order mixed type partial differential difference equations. AIMS Mathematics, 2022, 7(2): 1907-1924. doi: 10.3934/math.2022110
    [6] Zhiyong Xu, Junfeng Xu . Solutions to some generalized Fermat-type differential-difference equations. AIMS Mathematics, 2024, 9(12): 34488-34503. doi: 10.3934/math.20241643
    [7] Guowei Zhang . The exact transcendental entire solutions of complex equations with three quadratic terms. AIMS Mathematics, 2023, 8(11): 27414-27438. doi: 10.3934/math.20231403
    [8] Hong Yan Xu, Zu Xing Xuan, Jun Luo, Si Min Liu . On the entire solutions for several partial differential difference equations (systems) of Fermat type in C2. AIMS Mathematics, 2021, 6(2): 2003-2017. doi: 10.3934/math.2021122
    [9] Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470
    [10] Fengrong Zhang, Linlin Wu, Jing Yang, Weiran Lü . On entire solutions of certain type of nonlinear differential equations. AIMS Mathematics, 2020, 5(6): 6124-6134. doi: 10.3934/math.2020393
  • The integrable Kuralay-Ⅱ system (K-IIS) plays a significant role in discovering unique complex nonlinear wave phenomena that are particularly useful in optics. This system enhances our understanding of the intricate dynamics involved in wave interactions, solitons, and nonlinear effects in optical phenomena. Using the Riccati modified extended simple equation method (RMESEM), the primary objective of this research project was to analytically find and analyze a wide range of new soliton solutions, particularly fractal soliton solutions, in trigonometric, exponential, rational, hyperbolic, and rational-hyperbolic expressions for K-IIS. Some of these solutions displayed a combination of contour, two-dimensional, and three-dimensional visualizations. This clearly demonstrates that the generated solitons solutions are fractals due to the instability produced by periodic-axial perturbation in complex solutions. In contrast, the genuine solutions, within the framework of K-IIS, take the form of hump solitons. This work demonstrates the adaptability of the K-IIS for studying intricate nonlinear phenomena in a wide range of scientific and practical disciplines. The results of this work will eventually significantly influence our comprehension and analysis of nonlinear wave dynamics in related physical systems.



    Throughout this paper, let p be an odd prime and q=pn for some positive integer n. Codebooks (also known as signal sets) with low coherence are typically used to distinguish signals of different users in code division multiple access (CDMA) systems. An (N,K) codebook C is a finite set {c0,c1,,cN1}, where the codeword ci, 0iN1, is a unit norm 1×K complex vector over an alphabet A. The maximum inner-product correlation Imax(C) of C is defined by

    Imax(C)=max0ijN1|cicHj|,

    where cHj denotes the conjugate transpose of cj. The maximal cross-correlation amplitude Imax(C) of C is an important index of C, as it can approximately optimize many performance metrics such as outage probability and average signal-to-noise ratio. For a fixed K, researchers are highly interested in designing a codebook C with the parameter N being as large as possible and Imax(C) being as small as possible simultaneously. Unfortunately, there exists a bound between the parameters N, K and Imax(C).

    Lemma 1. ([1]) For any (N,K) codebook C with NK,

    Imax(C)NK(N1)K. (1.1)

    The bound in (1.1) is called the Welch bound of C and is denoted by Iw(C). If the codebook C achieves Iw(C), then C is said to be optimal with respect to the Welch bound. However, constructing codebooks achieving the Welch bound is extremely difficult. Hence, many researchers have focused their main energy on constructing asymptotically optimal codebooks, i.e., Imax(C) asymptotically meets the Welch bound Iw(C) for sufficiently large N [2,3,4,5,6,7].

    The objective of this paper is to construct a class of complex codebooks and investigate their maximum inner-product correlation. Results show that these constructed complex codebooks are nearly optimal with respect to the Welch bound, i.e., the ratio of their maximal cross-correlation amplitude to the Welch bound approaches 1. These codebooks may have applications in strongly regular graphs [8], combinatorial designs [9,10], and compressed sensing [11,12].

    This paper is organized as follows. In Section 2, we review some essential mathematical concepts regarding characters and Gauss sums over finite fields. In Section 3, we present a class of asymptotically optimal codebooks using the trace functions and multiplicative characters over finite fields. Finally, we make a conclusion in Section 4.

    In this section, we review some essential mathematical concepts regarding characters and Gauss sums over finite fields. These concepts will play significant roles in proving the main results of this paper.

    Let n be a positive integer and p an odd prime. Denote the finite field with pn elements by Fpn. The trace function Trn from Fpn to Fp is defined by

    Trn(x)=n1i=0xpi.

    Let ζp denote a primitive p-th root of complex unity and Trn denote the trace function from Fpn to Fp. For xFpn, it can be checked that χn given by χn(x)=ζTrn(x)p is an additive character of Fpn, and χn is called the canonical additive character of Fpn. Assume aFpn, then every additive character of Fpn can be obtained by μa(x)=χn(ax) where  xFpn. The orthogonality relation of μa is given by

    xFpnμa(x)={pn,if a=0,0,otherwise. (2.1)

    Let q=pn and α be a primitive element of Fq, then all multiplicative characters of Fq are given by φj(αi)=ζijq1, where ζq1 denotes a primitive (q1)-th root of unity and 0i,jq2. The quadratic character of Fq is the character φ(q1)/2, which will be denoted by ηn in the sequel, and ηn is extended by setting ηn(0)=0. For φj, its orthogonality relation is given by

    xFpnφj(x)={q1,if j=0,0,otherwise.

    The Gauss sum G(ηn) over Fpn is defined by

    G(ηn)=xFpnηn(x)χn(x).

    The explicit value of G(ηn) is given in the following lemma.

    Lemma 2 ([13], Theorem 5.15). With symbols and notations above, we have

    G(ηn)=(1)n1(1)(p1)n4q12.

    The following results on exponential sums will play an important role in proving the main results of this paper.

    Lemma 3 ([13], p.195). With symbols and notations above, we have

    η1(x)=1paFpG(η1)η1(a)χ1(ax),

    where η1 denotes the quadratic character and χ1 the canonical additive character of Fp.

    Lemma 4 ([13], Theorem 5.33). If f(x)=a2x2+a1x+a0Fpn[x] with a20, then

    xFpnζTrn(f(x))p=ηn(a2)G(ηn)ζTrn(a0a21(4a2)1)p.

    Lemma 5 ([14], Theorem 2). Let n=2m be an even integer and zFp, then

    xFpnζzTrn(xpm+1)p=pm.

    Lemma 6 ([15]). Let n=2m be an even integer, aFpm, and bFpn, then

    xFpnζTrm(axpm+1)+Trn(bx)p=pmζTrm(bpm+1a)p.

    Lemma 7 ([16], Lemma 3.12). If A and B are finite abelian groups, then there is an isomorphism

    ^A×BˆA׈B,

    where ˆA consists of all characters of A.

    By this lemma, we know that

    ^F+pn×F+pn={μa,b:a,bFpn}

    where

    μa,b(x,y)=ζTrn(ax+by)p

    for x,yFpn.

    In this section, we always suppose that n=2m is an even integer and p is an odd prime. The set D is defined as follows:

    D={(x,y)Fpn×Fpn:η1(Trn(x2+ypm+1))=1},

    where η1 is the quadratic character of Fp. A codebook C is constructed by

    C={ca,b:a,bFpn}, (3.1)

    where ca,b=1|D|(μa,b(x,y))(x,y)D, μa,b(x,y)=ζTrn(ax+by)p for (x,y)D and |D| denotes the cardinality of the set D.

    Lemma 8. With symbols and notations as above, we have

    |D|=p12(p2n1(1)n(p1)4pn1).

    Proof. Let

    A1=x,yFpnTrn(x2+ypm+1)=01, A2=x,yFpnTrn(x2+ypm+1)0η1(Trn(x2+ypm+1)).

    Note that

    x,yFpnTrn(x2+ypm+1)=01+x,yFpnTrn(x2+ypm+1)01=p2n.

    Together with the definition of D, we have

    |D|=x,yFpnTrn(x2+ypm+1)0η1(Trn(x2+ypm+1))+12=12x,yFpnTrn(x2+ypm+1)0η1(Trn(x2+ypm+1))+12x,yFpnTrn(x2+ypm+1)01=A22+p2n212x,yFpnTrn(x2+ypm+1)=01=12(p2nA1+A2). (3.2)

    By definition, we have

    A1=1px,yFpnzFpζzTrn(x2+ypm+1)p=p2n1+1pzFpx,yFpnζTrn(zx2)+Trn(zypm+1)p=p2n1+(1)n(p1)4pn1(p1). (3.3)

    where the last equality follows from Lemmas 2, 4, and 5. Note that ηn(z)=1 for zFp if n is even. By Lemma 3, we obtain

    A2=G(ηn)paFpη1(a)xFpnζTrn(ax2)pyFpnζTrn(aypm+1)p

    Using Lemmas 4 and 5, we get

    A2=pm1G2(ηn)aFpη1(a)=0.

    The desired conclusion follows from (3.2) and (3.3).

    Example 1. Let p=5 and n=2. By the Magma program, we know that |D|=240, which is consistent with Lemma 8.

    Theorem 9. Let symbols and notations be the same as before, then the codebook C defined in (3.1) has parameters [p2n,K],

    K=p12(p2n1(1)n(p1)4pn1),

    and

    Imax(C)=(p+1)pn1/(2K).

    Proof. By the definition of the set C and Lemma 8, we deduce that C is a [p2n,K] codebook. If a,bFpn and (a,b)(0,0), then we have

    x,yFpnζTrn(ax+by)p=x,yFpnTrn(x2+ypm+1)=0ζTrn(ax+by)p+x,yFpnTrn(x2+ypm+1)0ζTrn(ax+by)p=0

    This implies that

    x,yFpnTrn(x2+ypm+1)=0ζTrn(ax+by)p=x,yFpnTrn(x2+ypm+1)0ζTrn(ax+by)p.

    For a,bFpn and (a,b)(0,0), we have that

    (x,y)Dμa,b(x,y)=x,yFpnTrn(x2+ypm+1)0ζTrn(ax+by)pη1(Trn(x2+ypm+1))+12=12x,yFpnTrn(x2+ypm+1)=0ζTrn(ax+by)p+12x,yFpnTrn(x2+ypm+1)0ζTrn(ax+by)pη1(Trn(x2+ypm+1))=12(B1+B2), (3.4)

    where

    B1=x,yFpnTrn(x2+ypm+1)=0ζTrn(ax+by)p, B2=x,yFpnζTrn(ax+by)pη1(Trn(x2+ypm+1)).

    By (2.1), we derive that

    zFpζzTrn(x2+ypm+1)p={p,if Trn(x2+ypm+1)=0,0,otherwise.

    Combining Lemmas 4 and 6, we get that

    B1=1px,yFpnzFpζTrn(ax+by)pζzTrn(x2+ypm+1)p=1pzFpx,yFpnζTrn(zx2+ax)pζTrn(zypm+1+by)p=pm1G(ηn)zFpηn(z)ζTrn(a2+bpm+1)zp={pm1(p1)G(ηn),if Trn(a2+bpm+1)=0,pm1G(ηn),if Trn(a2+bpm+1)0, (3.5)

    where G(ηn) is given in Lemma 2. By Lemma 3, we have that

    B2=G(η1)pzFpη1(z)xFpnζTrn(zx2+ax)pyFpnζTrn(zypm+1+by)p.

    Moreover, by Lemmas 4 and 6, we obtain

    B2=pm1G(η1)G(ηn)zFpη1(z)ζzTrn(a2+bpm+1)p={0,if Trn(a2+bpm+1)=0,pm(1p)G(ηn)η1(Trn(a2+bpm+1)),if Trn(a2+bpm+1)0. (3.6)

    It follows from Lemma 2 and (3.4) that

    (x,y)Dμa,b(x,y){12(p1)pm1G(ηn),12(p+1)pm1G(ηn)}. (3.7)

    For any two distinct codewords cz1,z2, cz1,z2C, i.e., (z1,z2)(z1,z2), it is easy to check that

    |cz1,z2cHz1,z2|=1K|(x,y)Dμz1z1,z2z2(x,y)|. (3.8)

    Combining (3.7) and (3.8), we get that Imax(C)=(p+1)pn1/(2K).

    Example 2. Let f(x) be an irreducible polynomial over the field F3 and f(x)=x2+x+2 in F3[x]. Suppose that p=3, n=2, and α is a root of f(x) over F3, then m=1, q=32, and F9=F3(α). It can be verified that the set D consists of the following 30 elements:

    D={(x,y)F9×F9:Tr2(x2+y4)=1}={(1+2α,0),(2+α,0),(1,1),(1,2),(1,1+2α),(1,2+α),(2,1),(2,2),(2,1+2α),(2,2+α),(α,α),(α,2α),(α,1+α),(α,2+2α),(2α,α),(2α,2α),(2α,1+α),(2α,2+2α),(0,α),(0,2α),(0,1+α),(0,2+2α),(1+α,α),(1+α,2α),(1+α,1+α),(1+α,2+2α),(2+2α,α),(2+2α,2α),(2+2α,1+α),(2+2α,2+2α)}.

    The corresponding codebook C is given by

    C={130(ζTr2(ax+by)3)(x,y)D:a,bF9},

    where ζ3=e2π13 and Tr2 denotes the trace function from F9 to F3.

    Corollary 10. The codebook C constructed in (3.1) is asymptotically optimal with respect to the Welch bound.

    Proof. The corresponding Welch bound is

    Iw(C)=p2n1(p+1)+(1)n(p1)4pn1(p1)(p2n1)(p1)(p2n1(1)n(p1)4pn1).

    We deduce that

    limpn+Iw(C)Imax(C)=limpn+4K(p2nK)(p2n1)(p+1)2p2n2=1,

    which implies that C asymptotically meets the Welch bound.

    In Table 1, we show some parameters of some specific codebooks defined in (3.1). From this table, we conclude that Imax(C) is very close to Iw(C) for largely enough p, which ensures the correctness of Theorem 9 and Corollary 1.

    Table 1.  The parameters of the codebook C in (3.1) for n=4.
    p N K Imax(C) Iw(C) Imax(C)/Iw(C)
    3 38 2160 1/40 1.762×102 1.4185
    7 78 2469600 1/1800 4.811×104 1.1548
    11 118 97429200 1/12200 7.483×105 1.0955
    13 138 376477920 1/24480 3.782×105 1.0801
    17 178 3282670080 1/74240 1.2699×105 1.0607

     | Show Table
    DownLoad: CSV

    This paper presented a family of codebooks by the combination of additive characters and multiplicative characters over finite fields. Results show that the constructed codebooks are asymptotically optimal in the sense that the maximum cross correlation amplitude of the codebooks asymptotically achieves the Welch bound. As a comparison, parameters of some known nearly optimal codebooks and the constructed ones are listed in Table 2. From this table, we can conclude that the parameters of C are not covered by those in [2,3,4,5,6,17,18,19]. This means the presented codebooks have new parameters.

    Table 2.  The parameters of codebooks asymptotically meeting the Welch bound.
    Ref. Parameters (N,K) Constraints
    [2] ((q1)+M,M), M=(q1)+(1)+1q. q is a prime power, >2.
    [3] (2K+(1)ln,K), K=(q11)n(ql1)n(1)ln2. 1il, si>1, qi=2si, l>1 and n>1.
    [4] ((qs1)m+qsm1,qsm1) s>1, m>1, q is a prime power.
    [5] ((pmin+1)Q2,Q2) Q>1 is an integer, pmin is the smallest prime factor of Q.
    [6] (pminN1N2,N1N2) N11, N2=N1+o(N1), pmin is the smallest prime factor of N2.
    [6] (pminN1N2,N1N2) N11, N2=N1+o(N1), pmin is the smallest prime factor of N2.
    [17] (q1q2ql,(q1q2ql1)/2) 1il, qi is a prime power, qi3(mod4)
    [18] (q,q+12) q is a prime power.
    [19] (q3+q2,q2) or (q3+q2q,q2q) q is a prime power.
    Thm. 3.1 (p2n,p12(p2n1(1)n(p1)4pn1)) p is an odd prime, n=2m, m is a positive integer.

     | Show Table
    DownLoad: CSV

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Innovation Project of Engineering Research Center of Integration and Application of Digital Learning Technology (No.1221003), Humanities and Social Sciences Youth Foundation of Ministry of Education of China (No. 22YJC870018), the Science and Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2020KJ112, 2022KJ075, KYQD1817), the National Natural Science Foundation of China (Grant No. 12301670), the Natural Science Foundation of Tianjin (Grant No. 23JCQNJC00050), Haihe Lab. of Information Technology Application Innovation (No. 22HHXCJC00002), Fundamental Research Funds for the Central Universities, China (Grant No. ZY2301, BH2316), the Open Project of Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems (No. TJKL-AITS-20241004, No. TJKL-AITS-20241006).

    The authors declare no conflicts of interest.



    [1] W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 52. https://doi.org/10.1007/s11082-019-2162-8 doi: 10.1007/s11082-019-2162-8
    [2] C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee-Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
    [3] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, On the exact soliton solutions and different wave structures to the modified Schrödinger's equation, Results Phys., 54 (2023), 107037. https://doi.org/10.1016/j.rinp.2023.107037 doi: 10.1016/j.rinp.2023.107037
    [4] C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrödinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
    [5] M. Alqudah, S. Mukhtar, H. A. Alyousef, S. M. Ismaeel, S. A. El-Tantawy, F. Ghani, Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water, AIMS Math., 9 (2024), 21212–21238. https://doi.org/10.3934/math.20241030 doi: 10.3934/math.20241030
    [6] M. Ghasemi, High order approximations using spline-based differential quadrature method: implementation to the multi-dimensional PDEs, Appl. Math. Model., 46 (2017), 63–80. https://doi.org/10.1016/j.apm.2017.01.052 doi: 10.1016/j.apm.2017.01.052
    [7] N. Perrone, R. Kao, A general finite difference method for arbitrary meshes, Comput. Struct., 5 (1975), 45–57. https://doi.org/10.1016/0045-7949(75)90018-8 doi: 10.1016/0045-7949(75)90018-8
    [8] S. Mahmood, R. Shah, H. Khan, M. Arif, Laplace adomian decomposition method for multi dimensional time fractional model of Navier-Stokes equation, Symmetry, 11 (2019), 149. https://doi.org/10.3390/sym11020149 doi: 10.3390/sym11020149
    [9] M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Phys. D, 211 (2005), 1–8. https://doi.org/10.1016/j.physd.2005.08.002 doi: 10.1016/j.physd.2005.08.002
    [10] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The finite element method: its basis and fundamentals, 6 Eds., Elsevier, 2005.
    [11] M. M. A. Hammad, R. Shah, B. M. Alotaibi, M. Alotiby, C. G. L. Tiofack, A. W. Alrowaily, et al., On the modified versions of (GG)-expansion technique for analyzing the fractional coupled Higgs system, AIP Adv., 13 (2023), 105131. https://doi.org/10.1063/5.0167916 doi: 10.1063/5.0167916
    [12] Y. Chen, B. Li, H. Zhang, Generalized Riccati equation expansion method and its application to the Bogoyavlenskii's generalized breaking soliton equation, Chin. Phys., 12 (2003), 940. https://doi.org/10.1088/1009-1963/12/9/303 doi: 10.1088/1009-1963/12/9/303
    [13] E. Yusufoǧlu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, Int. J. Comput. Math., 83 (2006), 915–924. https://doi.org/10.1080/00207160601138756 doi: 10.1080/00207160601138756
    [14] H. Liu, T. Zhang, A note on the improved tan(ϕ(ξ)/2)-expansion method, Optik, 131 (2017), 273–278. https://doi.org/10.1016/j.ijleo.2016.11.029 doi: 10.1016/j.ijleo.2016.11.029
    [15] M. Kaplan, A. Bekir, A. Akbulut, E. Aksoy, The modified simple equation method for nonlinear fractional differential equations, Rom. J. Phys., 60 (2015), 1374–1383.
    [16] M. Guo, H. Dong, J. Liu, H. Yang, The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method, Nonlinear Anal., 24 (2019), 1–19. https://doi.org/10.15388/NA.2019.1.1 doi: 10.15388/NA.2019.1.1
    [17] S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
    [18] M. Lei, H. Liao, S. Wang, H. Zhou, J. Zhu, H. Wan, et al., Electro-sorting create heterogeneity: constructing a multifunctional Janus film with integrated compositional and microstructural gradients for guided bone regeneration, Adv. Sci., 11 (2024), 2307606. https://doi.org/10.1002/advs.202307606 doi: 10.1002/advs.202307606
    [19] R. Ali, M. M. Alam, S. Barak, Exploring chaotic behavior of optical solitons in complex structured conformable perturbed Radhakrishnan-Kundu-Lakshmanan model, Phys. Scr., 99 (2024), 095209. https://doi.org/10.1088/1402-4896/ad67b1 doi: 10.1088/1402-4896/ad67b1
    [20] R. Ali, A. S. Hendy, M. R. Ali, A. M. Hassan, F. A. Awwad, E. A. Ismail, Exploring propagating soliton solutions for the fractional Kudryashov-Sinelshchikov equation in a mixture of liquid-gas bubbles under the consideration of heat transfer and viscosity, Fractal Fract., 7 (2023), 773. https://doi.org/10.3390/fractalfract7110773 doi: 10.3390/fractalfract7110773
    [21] X. Xie, Y. Gao, F. Hou, T. Cheng, A. Hao, H. Qin, Fluid inverse volumetric modeling and applications from surface motion, IEEE Trans. Vis. Comput. Gr., 2024, 1–17. https://doi.org/10.1109/TVCG.2024.3370551
    [22] J. Hong, L. Gui, J. Cao, Analysis and experimental verification of the tangential force effect on electromagnetic vibration of PM motor, IEEE Trans. Energy Conver., 38 (2023), 1893–1902. https://doi.org/10.1109/TEC.2023.3241082 doi: 10.1109/TEC.2023.3241082
    [23] S. Y. Arafat, S. M. Rayhanul Islam, Bifurcation analysis and soliton structures of the truncated M-fractional Kuralay-Ⅱ equation with two analytical techniques, Alex. Eng. J., 105 (2024), 70–87. https://doi.org/10.1016/j.aej.2024.06.079 doi: 10.1016/j.aej.2024.06.079
    [24] G. Zhang, W. Li, M. Yu, H. Huang, Y. Wang, Z. Han, et al., Electric-field-driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues, Adv. Sci., 10 (2023), 2206264. https://doi.org/10.1002/advs.202206264 doi: 10.1002/advs.202206264
    [25] S. M. Rayhanul Islam, Bifurcation analysis and soliton solutions to the doubly dispersive equation in elastic inhomogeneous Murnaghans rod, Sci. Rep., 14 (2024), 11428. https://doi.org/10.1038/s41598-024-62113-z doi: 10.1038/s41598-024-62113-z
    [26] Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrodinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
    [27] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [28] Y., Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [29] H. Tian, M. Zhao, J. Liu, Q. Wang, X. Yu, Z. Wang, Dynamic analysis and sliding mode synchronization control of chaotic systems with conditional symmetric fractional-order memristors, Fractal Fract., 8 (2024), 307. https://doi.org/10.3390/fractalfract8060307 doi: 10.3390/fractalfract8060307
    [30] L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network, IEEE Trans. Cybernetics, 53 (2023), 4015–4028. https://doi.org/10.1109/TCYB.2022.3225106 doi: 10.1109/TCYB.2022.3225106
    [31] M. Li, T. Wang, F. Chu, Q. Han, Z. Qin, M. J. Zuo, Scaling-basis chirplet transform, IEEE Trans. Ind. Electron., 68 (2021), 8777–8788. https://doi.org/10.1109/TIE.2020.3013537 doi: 10.1109/TIE.2020.3013537
    [32] R. Ali, S. Barak, A. Altalbe, Analytical study of soliton dynamics in the realm of fractional extended shallow water wave equations, Phys. Scr., 99 (2024), 065235. https://doi.org/10.1088/1402-4896/ad4784 doi: 10.1088/1402-4896/ad4784
    [33] A. Iftikhar, A. Ghafoor, T. Zubair, S. Firdous, S. T. Mohyud-Din, Solutions of (2+1) dimensional generalized KdV, Sin Gordon and Landau-Ginzburg-Higgs equations, Sci. Res. Essays, 8 (2013), 1349–1359.
    [34] M. M. Bhatti, D. Q. Lu, An application of Nwogu's Boussinesq model to analyze the head-on collision process between hydroelastic solitary waves, Open Phys., 17 (2019), 177–191. https://doi.org/10.1515/phys-2019-0018 doi: 10.1515/phys-2019-0018
    [35] J. H., He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [36] S. Behera, N. H. Aljahdaly, Nonlinear evolution equations and their traveling wave solutions in fluid media by modified analytical method, Pramana, 97 (2023), 130. https://doi.org/10.1007/s12043-023-02602-4 doi: 10.1007/s12043-023-02602-4
    [37] H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
    [38] W. Thadee, A. Chankaew, S. Phoosree, Effects of wave solutions on shallow-water equation, optical-fibre equation and electric-circuit equation, Maejo Int. J. Sci. Tech., 16 (2022), 262–274.
    [39] A. R. Alharbi, M. B. Almatrafi, Riccati-Bernoulli sub-ODE approach on the partial differential equations and applications, Int. J. Math. Comput. Sci., 15 (2020), 367–388.
    [40] M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.1007/s11082-022-03819-0 doi: 10.1007/s11082-022-03819-0
    [41] J. F. Alzaidy, Fractional sub-equation method and its applications to the space-time fractional differential equations in mathematical physics, Br. J. Math. Comput. Sci., 3 (2013), 153–163.
    [42] M. M. Al-Sawalha, H. Yasmin, R. Shah, A. H. Ganie, K. Moaddy, Unraveling the dynamics of singular stochastic solitons in stochastic fractional Kuramoto-Sivashinsky equation, Fractal Fract., 7 (2023), 753. https://doi.org/10.3390/fractalfract7100753 doi: 10.3390/fractalfract7100753
    [43] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [44] M. Aldandani, A. A. Altherwi, M. M. Abushaega, Propagation patterns of dromion and other solitons in nonlinear Phi-Four (ϕ4) equation, AIMS Math., 9 (2024), 19786–19811. https://doi.org/10.3934/math.2024966 doi: 10.3934/math.2024966
    [45] N. Iqbal, M. B. Riaz, M. Alesemi, T. S. Hassan, A. M. Mahnashi, A. Shafee, Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation, AIMS Math., 9 (2024), 16666–16686. https://doi.org/10.3934/math.2024808 doi: 10.3934/math.2024808
    [46] K. J. Wang, F. Shi, Multi-soliton solutions and soliton molecules of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for the incompressible fluid, Europhys. Lett., 145 (2024), 42001. https://doi.org/10.1209/0295-5075/ad219d doi: 10.1209/0295-5075/ad219d
    [47] W. Alhejaili, E. Az-Zo'bi, R. Shah, S. A. El-Tantawy, On the analytical soliton approximations to fractional forced Korteweg-de Vries equation arising in fluids and plasmas using two novel techniques, Commun. Theor. Phys., 76 (2024), 085001. https://doi.org/10.1088/1572-9494/ad53bc doi: 10.1088/1572-9494/ad53bc
    [48] S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
    [49] S. Noor, W. Albalawi, R. Shah, A. Shafee, S. M. Ismaeel, S. A. El-Tantawy, A comparative analytical investigation for some linear and nonlinear time-fractional partial differential equations in the framework of the Aboodh transformation, Front. Phys., 12 (2024) 1374049. https://doi.org/10.3389/fphy.2024.1374049 doi: 10.3389/fphy.2024.1374049
    [50] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [51] S. Alshammari, K. Moaddy, R. Shah, M. Alshammari, Z. Alsheekhhussain, M. M. Al-Sawalha, et al., Analysis of solitary wave solutions in the fractional-order Kundu-Eckhaus system, Sci. Rep., 14 (2024), 3688. https://doi.org/10.1038/s41598-024-53330-7 doi: 10.1038/s41598-024-53330-7
    [52] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation, Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298 doi: 10.1016/j.rinp.2023.107298
    [53] X. Xi, J. Li, Z. Wang, H. Tian, R. Yang, The effect of high-order interactions on the functional brain networks of boys with ADHD, Eur. Phys. J. Spec. Top., 233 (2024), 817–829. https://doi.org/10.1140/epjs/s11734-024-01161-y doi: 10.1140/epjs/s11734-024-01161-y
    [54] Z. Wang, M. Chen, X. Xi, H. Tian, R. Yang, Multi-chimera states in a higher order network of FitzHugh-Nagumo oscillators, Eur. Phys. J. Spec. Top., 233 (2024), 779–786. https://doi.org/10.1140/epjs/s11734-024-01143-0 doi: 10.1140/epjs/s11734-024-01143-0
    [55] M. Lakshmanan, Continuum spin system as an exactly solvable dynamical system, Phys. Lett. A, 61 (1977), 53–54. https://doi.org/10.1016/0375-9601(77)90262-6 doi: 10.1016/0375-9601(77)90262-6
    [56] V. E. Zakharov, L. A. Takhtadzhyan, Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet, Theor. Math. Phys., 38 (1979), 17–23.
    [57] Z. Sagidullayeva, G. Nugmanova, R. Myrzakulov, N. Serikbayev, Integrable Kuralay equations: geometry, solutions and generalizations, Symmetry, 14 (2022), 1374. https://doi.org/10.3390/sym14071374 doi: 10.3390/sym14071374
    [58] W. A. Faridi, M. A. Bakar, Z. Myrzakulova, R. Myrzakulov, A. Akgul, S. M. El Din, The formation of solitary wave solutions and their propagation for Kuralay equation, Results Phys., 52 (2023), 106774. https://doi.org/10.1016/j.rinp.2023.106774 doi: 10.1016/j.rinp.2023.106774
    [59] T. Mathanaranjan, Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation, Optik, 290 (2023), 171266. https://doi.org/10.1016/j.ijleo.2023.171266 doi: 10.1016/j.ijleo.2023.171266
    [60] A. Zafar, M. Raheel, M. R. Ali, Z. Myrzakulova, A. Bekir, R. Myrzakulov, Exact solutions of M-fractional Kuralay equation via three analytical schemes, Symmetry, 15 (2023), 1862. https://doi.org/10.3390/sym15101862 doi: 10.3390/sym15101862
    [61] A. Farooq, W. X. Ma, M. I. Khan, Exploring exact solitary wave solutions of Kuralay-Ⅱ equation based on the truncated M-fractional derivative using the Jacobi elliptic function expansion method, Opt. Quant. Electron., 56 (2024), 1105. https://doi.org/10.1007/s11082-024-06841-6 doi: 10.1007/s11082-024-06841-6
    [62] Y. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable Kairat-Ⅱ and Kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(777) PDF downloads(65) Cited by(0)

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog