Research article

Solutions to some generalized Fermat-type differential-difference equations

  • Received: 01 November 2024 Revised: 24 November 2024 Accepted: 29 November 2024 Published: 09 December 2024
  • MSC : 30D35, 39A13, 39B72

  • The main purpose of this article is to study Fermat-type complex differential-difference equations $ f^{(k)}(z)^{2}+[\alpha f(z+c)-\beta f(z)]^{2} = R(z) $. Our results improve some results due to Wang–Xu–Tu [AIMS. Mathematics, 2020], Zhang [Bull. Korean. Math. Soc, 2018], and Long–Qin [Applied Mathematics-A Journal of Chinese Universities, 2024]. Moreover, we provide some examples to show the existence of the solutions.

    Citation: Zhiyong Xu, Junfeng Xu. Solutions to some generalized Fermat-type differential-difference equations[J]. AIMS Mathematics, 2024, 9(12): 34488-34503. doi: 10.3934/math.20241643

    Related Papers:

  • The main purpose of this article is to study Fermat-type complex differential-difference equations $ f^{(k)}(z)^{2}+[\alpha f(z+c)-\beta f(z)]^{2} = R(z) $. Our results improve some results due to Wang–Xu–Tu [AIMS. Mathematics, 2020], Zhang [Bull. Korean. Math. Soc, 2018], and Long–Qin [Applied Mathematics-A Journal of Chinese Universities, 2024]. Moreover, we provide some examples to show the existence of the solutions.



    加载中


    [1] T. B. Cao, L. Xu, Logarithmic difference lemma in several complex variables and partial difference equations, Annali di Matematica, 199 (2020), 767–794. https://doi.org/10.1007/s10231-019-00899-w doi: 10.1007/s10231-019-00899-w
    [2] F. Gross, On the equation $f^{n}+g^{n} = 1$, Bull. Amer. Math. Soc., 72 (1966), 86–88. https://doi.org/10.1090/S0002-9904-1966-11429-5 doi: 10.1090/S0002-9904-1966-11429-5
    [3] W. K. Hayman, Meromorphic functions, Oxford: Clarendon Press, 1964.
    [4] D. Khavinson, A note on entire solutions of the Eiconal equation, The American Mathematical Monthly, 102 (1995), 159–161. https://doi.org/10.1080/00029890.1995.11990551 doi: 10.1080/00029890.1995.11990551
    [5] B. Q. Li, Entire solutions of certain partial differential equations and factorization of partial derivatives, Trans. Amer. Math. Soc., 357 (2004), 3169–3177. https://doi.org/10.1090/S0002-9947-04-03745-6 doi: 10.1090/S0002-9947-04-03745-6
    [6] B. Q. Li, On entire solutions of Fermat-type partial differential equations, Int. J. Math., 15 (2004), 473–485. https://doi.org/10.1142/S0129167X04002399 doi: 10.1142/S0129167X04002399
    [7] K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. https://doi.org/10.1016/j.jmaa.2009.05.061 doi: 10.1016/j.jmaa.2009.05.061
    [8] K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-diference equations, Arch. Math., 99 (2012), 147–155. https://doi.org/10.1007/s00013-012-0408-9 doi: 10.1007/s00013-012-0408-9
    [9] J.-R. Long, D.-Z. Qin, On entire solutions of some Fermat type differential-difference equations, Appl. Math. J. Chin. Univ., 39 (2024), 69–88. https://doi.org/10.1007/s11766-024-4132-6 doi: 10.1007/s11766-024-4132-6
    [10] Y. Lo, Value distribution theory, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-662-02915-2
    [11] F. Lü, Z. Li, Meromorphic solutions of Fermat-type partial differential equations, J. Math. Anal. Appl., 478 (2019), 864–873. https://doi.org/10.1016/j.jmaa.2019.05.058 doi: 10.1016/j.jmaa.2019.05.058
    [12] X. G. Qi, L. Z. Yang, On meromorphic solutions of the Fermat type difference equations, Mediterr. J. Math., 21 (2024), 122. https://doi.org/10.1007/s00009-024-02643-y doi: 10.1007/s00009-024-02643-y
    [13] A. Wiles, Modular elliptic curves and Fermats last theorem, Ann. Math., 141 (1995), 443–551. https://doi.org/10.2307/2118559 doi: 10.2307/2118559
    [14] H. Wang, H. Y. Xu, J. Tu, The existence and forms of solutions for some Fermat-type differential-difference equations, AIMS Math., 5 (2020), 685–700. https://doi.org/10.3934/math.2020046 doi: 10.3934/math.2020046
    [15] H. Y. Xu, A. Aljohani, Y. H. Xu, H. Li, J. A. Shali, Results on solutions for several systems of the first order nonlinear PDEs and PDDEs in $\mathbb{C}^2$, TWMS J. Pure Appl. Math., 15 (2024), 228–245. https://doi.org/10.30546/2219-1259.15.2.2024.01228 doi: 10.30546/2219-1259.15.2.2024.01228
    [16] H. Y. Xu, G. Haldar, Entire solutions to Fermat-type difference and partial differential-difference equations in $\mathbb{C}^n$, Electron. J. Differ. Eq., 2024 (2024), 1–21. https://doi.org/10.58997/ejde.2024.26 doi: 10.58997/ejde.2024.26
    [17] H. Y. Xu, Y. Y. Jiang, Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables, RACSAM, 116 (2022), 8. https://doi.org/10.1007/s13398-021-01154-9 doi: 10.1007/s13398-021-01154-9
    [18] H. Y. Xu, H. Li, X. Ding, Entire and meromorphic solutions for systems of the differential difference equations, Demonstr. Math., 55 (2022), 676–694. https://doi.org/10.1515/dema-2022-0161 doi: 10.1515/dema-2022-0161
    [19] H. Y. Xu, K. Liu, Z. X. Xuan, Results on solutions of several product type nonlinear partial differential equations in $\mathbb{C}^3$, J. Math. Anal. Appl., 543 (2025), 128885. https://doi.org/10.1016/j.jmaa.2024.128885 doi: 10.1016/j.jmaa.2024.128885
    [20] H. Y. Xu, X. L. Liu, Y. H. Xu, On solutions for several systems of complex nonlinear partial differential equations with two variables, Anal. Math. Phys., 13 (2023), 47. https://doi.org/10.1007/s13324-023-00811-z doi: 10.1007/s13324-023-00811-z
    [21] H. Y. Xu, L. Xu, Transcendental entire solutions for several quadratic binomial and trinomial PDEs with constant coefficients, Anal. Math. Phys., 12 (2022), 64. https://doi.org/10.1007/s13324-022-00679-5 doi: 10.1007/s13324-022-00679-5
    [22] C.-C. Yang, H.-X. Yi, Uniqueness theory of meromorphic functions, Dordrecht: Springer, 2003.
    [23] J. Zhang, On some special difference equations of Malmquist type, Bull. Korean Math. Soc., 55 (2018), 51–61. https://doi.org/10.4134/BKMS.b160844 doi: 10.4134/BKMS.b160844
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(137) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog