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1. Introduction and results

We first assume that the reader is familiar with the basic results and notations of the Nevanlinna
theory and difference Nevanlinna theory with one complex variable, which can be found in [3,7,10,22].
In the past thirty years, there were lots of research focusing on the solutions of Fermat-type differential-
difference equations; readers can refer to [1, 4–6, 9, 11, 12, 15–21].

A. Wiles [13] in 1995 pointed out: The Fermat equation xm + ym = 1 does not admit nontrivial
solutions in rational numbers as m ≥ 3, and this equation possesses nontrivial rational solutions as
m = 2. About sixty years ago, Gross [2] investigated the existence of solutions for the Fermat-type
functional equation f m + gm = 1 and obtained: For m = 2, the entire solutions are f = cosα(z),
g = sinα(z), where α(z) is an entire function; for m > 2, there are no nonconstant entire solutions.
In 2009, Liu [7] proved that the Fermat-type equation f (z)2+ [ f (z+c)− f (z)]2 = a2 has no nonconstant
entire solutions of finite order, where a is a nonzero constant. In 2012, Liu [8] studied that the Fermat-
type equation f ′(z)2 + [ f (z + c) − f (z)]2 = 1 has the transcendental entire solutions with finite order.
In 2018, Zhang [23] generalized Liu’s [7, 8] theorem, and obtained

Theorem 1.1. Let f be a transcendental meromorphic function with finitely many poles and σ( f ) < ∞.
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Then f can not be a solution of the difference equation

f (z)2 + [ f (z + c) − f (z)]2 = R(z),

where R(z) is a nonzero rational function and c is a nonzero constant.

Theorem 1.2. Let f be a transcendental meromorphic function with finitely many poles and σ( f ) < ∞.
If f is a solution of the differential-difference equation

f ′(z)2 + [ f (z + c) − f (z)]2 = R(z),

where R(z) is a nonzero rational function and c is a nonzero constant, then R(z) is a nonzero constant,
and f is of the form

f (z) = c1e2iz + c2e−2iz + b, c = kπ + π/2,

where c1, c2 are two nonzero constants such that 16c1c2 = R(z), b is a constant, and k is an integer.

In 2020, Wang et al. [14] promoted Zhang’s [23] form and obtained

Theorem 1.3. Let α(, 0), β ∈ C, k be an integer. Let f be a transcendental meromorphic solution of
difference-differential equation of Fermat type

f ′(z)2 + [α f (z + c) − β f (z)]2 = R(z),

where R(z) is a nonzero rational function and c is a nonzero constant. If f is of finite order and has
finitely many poles, then iαc = ±1, and R(z) is a nonconstant polynomial with degz R ≤ 2, or R(z) is a
nonzero constant. Furthermore
(I) If R(z) is a nonconstant polynomial and degz R ≤ 2, then f is of the form

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
,

where R(z) = (as1(z) + m1)(−as2(z) + m2), a , 0, b ∈ C, and a, b, c, α, β satisfy α , ±β, a = −i(α + β),
c = (2k+1)π

a i, iαc = −1 or a = i(α − β), c = 2kπ
a i, iαc = 1, where s j = m jz + n j, m j, n j ∈ C( j = 1, 2);

(II) If R(z) is a nonzero constant, then f is of the form

f (z) =
n1eaz+b + n2e−(az+b)

2
+ d,

R(z) = −a2n1n2, a , 0, b ∈ C, and a, b, c, α, β satisfy the following cases:
(II1) if α = β, then a = −2αi, c = (2k+1)π

a i and d ∈ C;
(II2) if α = −β, then a = 2αi, c = 2kπ

a i and d = 0;
(II3) if α , ±β, then d = 0 and a = −i(α + β), c = (2k+1)π

a i or a = i(α − β), c = 2kπ
a i.

Theorem 1.4. Let α(, 0), β ∈ C, k be an integer. Let f be a transcendental meromorphic solution of
difference-differential equation of Fermat type

f ′′(z)2 + [α f (z + c) − β f (z)]2 = R(z), (1.1)
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where R(z) is a nonzero rational function and c is a nonzero constant.
(I) If α = ±β, then Eq (1.1) has no finite-order transcendental meromorphic solution with finitely many
poles;
(II) If α , ±β, and Eq (1.1) has a finite-order transcendental meromorphic solution f with finitely
many poles, then R(z) must be a nonzero polynomial with degz R ≤ 1. Furthermore,

(II1) if R(z) is a nonzero polynomial of degree one, then f (z) is of the form

f (z) =
s1(z)eaz+b + n2e−(az+b)

2
,

where a4 = α2 − β2, b ∈ C, c =
log a2+iβ

iα + 2kπi
a

, eac = 2a
iαc , ±1 and R(z) = a3n2[as1(z) + 2m1],

s1(z) = m1z + n1, or f (z) is of the form

f (z) =
n1eaz+b + s2(z)e−(az+b)

2
,

where a4 = α2 − β2, b ∈ C, c =
log −a2+iβ

iα + (2k + 1)πi
a

, eac = iαc
2a , ±1 and R(z) = a3n1[as2(z) − 2m2],

s2(z) = m2z + n2;
(II2) if R(z) is a nonzero constant, then f (z) is of the form

f (z) =
c1eaz+b + c2e−(az+b)

2
,

where a, b, c, α, β, c1, c2,R(z) satisfy a4 = α2 − β2, b ∈ C, c =
log a2+iβ

iα + 2kπi
a

and R(z) = a4c1c2.

Inspired by [14], can f ′ and f ′′ in Theorems 1.3 and 1.4 be replaced by f (k)? In this paper, we
consider this question. Our results are listed as follows.

Theorem 1.5. Let α(, 0), β ∈ C, k ∈ Z+, and k be an odd number. Let f be a transcendental
meromorphic solution of difference-differential equation of Fermat type

f (k)(z)2 + [α f (z + c) − β f (z)]2 = R(z), (1.2)

where R(z) is a nonzero rational function and c is a nonzero constant.
If f is of finite order and has finitely many poles, then iαc = ±1, and R(z) is a polynomial with

degz R = 1, or R(z) is a nonzero constant. Let s j(z) = m jz + n j, m j, n j ∈ C( j = 1, 2).
Case I: If R(z) is a polynomial with degz R = 1, then f is of the form

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
,

where R(z) = −n2a2k−1[as1(z) + km1], m1 , 0, m2 = 0, a , 0, b ∈ C, and a, b, c, α, β satisfy α , ±β,
ak = −i(α + β), c = (2l+1)π

a i, l ∈ Z, iαc = −kak−1 = −1 or ak = i(α − β), c = 2lπ
a i, l ∈ Z, iαc = kak−1 = 1;

or R(z) = n1a2k−1[−as2(z) + km2], m1 = 0, m2 , 0, a , 0, b ∈ C, and a, b, c, α, β satisfy α , ±β,
ak = −i(α + β), c = (2l+1)π

a i, l ∈ Z, iαc = kak−1 = −1 or ak = i(α − β), c = 2lπ
a i, l ∈ Z, iαc = −kak−1 = 1.
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Case II: If R(z) is a nonzero constant, then m j = 0( j = 1, 2), f is of the form

f (z) =
n1eaz+b + n2e−(az+b)

2
+ c0,

where R(z) = −a2kn1n2, a , 0, b ∈ C, and a, b, c, α, β satisfy the following cases:
(II1) if α = β, then ak = −2αi, c = (2l+1)π

a i and c0 ∈ C, l ∈ Z;
(II2) if α = −β, then ak = 2αi, c = 2lπ

a i and c0 = 0, l ∈ Z;
(II3) if α , ±β, then c0 = 0 and ak = −i(α + β), c = (2l+1)π

a i, l ∈ Z or ak = i(α − β), c = 2lπ
a i, l ∈ Z.

Remark 1. When k = 1, Theorem 1.5 becomes Theorem 1.3.

Remark 2. In [14], we find that Case (I) of Theorem 1.3 is not accurate, including the corresponding
examples. On page 695, line 11 of [14], substituting (5.10) into the first equation in (5.3), we have
R2(z) = −as2(z) + m2. Meanwhile, substituting (5.10) into the second equation in (5.3), we have
R2(z) = −as2(z) − m2. From this, we have m2 = 0, which is a contradiction. Therefore, if f ′(z)2 +

[α f (z + c) − β f (z)]2 = R(z) has a solution, then degz R ≤ 1.

Next, we will provide some examples to explain the existence of solutions to Eq (1.2) in the above
situation.

Example 1.1. For Case I, the transcendental entire function

f (z) =
(z + 1)e

√
3

3 z+b + e−(
√

3
3 z+b)

2

satisfies

f (3)(z)2 + [
1
√

3π
f (z + c) − (

√
3

9
i −

1
√

3π
) f (z)]2 = −

√
3

9
[

√
3

9
(z + 1) + 1],

where k = 3, s1(z) = z + 1, s2(z) = 1, c =
√

3πi, a =
√

3
3 , b ∈ C, α = 1

√
3π

, β =
√

3
9 i − 1

√
3π

and

R(z) = −
√

3
9 [
√

3
9 (z + 1) + 1].

The transcendental entire function

f (z) =
e
√

3
3 iz+b + (z + 1)e−(

√
3

3 iz+b)

2

satisfies

f (3)(z)2 + [
i
√

3π
f (z + c) − (

√
3

9
−

i
√

3π
) f (z)]2 = −

√
3

9
i[

√
3

9
i(z + 1) − 1],

where k = 3, s1(z) = 1, s2(z) = z + 1, c =
√

3π, a =
√

3
3 i, b ∈ C, α = i

√
3π

, β =
√

3
9 −

i
√

3π
and

R(z) = −
√

3
9 i[

√
3

9 i(z + 1) − 1].

Example 1.2. For Case II1, the transcendental entire function

f (z) =
ez+b + 2e−(z+b)

2
+ c0
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satisfies

f (3)(z)2 + [
i
2

f (z + c) −
i
2

f (z)]2 = −2,

where k = 3, n1 = 1, n2 = 2, a = 1, b, c0 ∈ C, c = πi, α = i
2 , β = i

2 and R(z) = −2.

Example 1.3. For Case II2, the transcendental entire function

f (z) =
e2z+b + e−(2z+b)

2
,

satisfies
f (3)(z)2 + [−4i f (z + c) − 4i f (z)]2 = −64,

where k = 3, n1 = 1, n2 = 1, a = 2, b ∈ C, c = πi, α = −4i, β = 4i and R(z) = −64.

Example 1.4. For Case II3, the transcendental entire function

f (z) =
2ez+b + e−(z+b)

2

satisfies
f (3)(z)2 + [ f (z + c) − (1 + i) f (z)]2 = −64,

where k = 3, n1 = 2, n2 = 1, a = 1, b ∈ C, c = 2πi, α = 1, β = 1 + i and R(z) = −2.

Theorem 1.6. Let α(, 0), β ∈ C, k ∈ Z+ and k be an even number. Let f be a transcendental
meromorphic solution of Eq (1.2).

If f is of finite order and has finitely many poles, then R(z) is a polynomial with degz R = 1, or R(z)
is a nonzero constant.
Case I: If α = ±β, then Eq (1.2) has no-finite order transcendental meromorphic solution with finitely
many poles;
Case II: If α , ±β, and Eq (1.2) has a finite-order transcendental meromorphic solution f with
finitely many poles, then R(z) must be a nonzero polynomial with degz R ≤ 1. Let s j = m jz + n j, m j,
n j ∈ C( j = 1, 2),

(II1) if R(z) is a polynomial with degz R = 1, then f (z) is of the form

f (z) =
s1(z)eaz+b + n2e−(az+b)

2
,

where a2k = α2−β2, b ∈ C, c =
log ak+iβ

iα + 2lπi
a

, l ∈ Z, eac = kak−1

iαc , ±1 and R(z) = n2a2k−1[as1(z)+km1],
or f (z) is of the form

f (z) =
n1eaz+b + s2(z)e−(az+b)

2
,

where a2k = α2−β2, b ∈ C, c =
log ak+iβ

iα + 2lπi
a

, l ∈ Z, eac = iαc
kak−1 , ±1 and R(z) = n1a2k−1[as2(z)−km2].

(II2) if R(z) is a nonzero constant, then f (z) is of the form

f (z) =
n1eaz+b + n2e−(az+b)

2
,
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where a, b, c, α, β, c1, c2,R(z) satisfy a2k = α2−β2, b ∈ C, l ∈ Z, c =
log ak+iβ

iα + 2lπi
a

and R(z) = a2kn1n2.

Remark 3. When k = 2, Theorem 1.6 becomes Theorem 1.4.

Next, we will provide some examples to explain the existence of solutions to Eq (1.2) in the above
situation.

Example 1.5. For Case II1, let c0 be a solution of equation e2c(2 − c) = 2, the transcendental entire
function

f (z) =
zez+b + e−(z+b)

2
satisfies

f (4)(z)2 + [
4

ic0ec0
f (z + c) −

4 − c0

ic0
f (z)]2 = −64,

where k = 4, s1(z) = z, n2 = 1, a = 1, b ∈ C, α =
4

ic0ec0
, β =

4 − c0

ic0
, α2 − β2 = 1, c0 = log

1 + iβ
iα

,

eac0 =
4

iαc0
and R(z) = z + 4.

Example 1.6. For Case II2, the transcendental entire function

f (z) =
ez+b + e−(z+b)

2

satisfies

f (4)(z)2 + [
i
2

f (z + c) −

√
5

2
i f (z)]2 = 1,

where k = 4, n1 = 1, n2 = 1, ec =
√

5 − 2, a = 1, b ∈ C, α = i
2 , β =

√
5

2 i, α2 − β2 = 1, c = log(
√

5 − 2)
and R(z) = 1.

In 2024, Long and Qin [9] studied this equation

f (k)(z)2 + P(z)2 f (z + c)2 = Q(z),

and obtained

Theorem 1.7. There is no transcendental entire solution with finite order of the equation

f (k)(z)2 + P(z)2 f (z + c)2 = Q(z), (1.3)

where P(z) is a non-constant polynomial, and Q(z) is a non-zero polynomial.

Motivating from Theorems 1.5 and 1.6, we replace f (z+ c) by the α f (z+ c)− β f (z) in Theorem 1.7
and obtain

Theorem 1.8. There is no transcendental entire solution with finite order of the equation

f (k)(z)2 + P(z)2(α f (z + c) − β f (z))2 = Q(z), (1.4)

where k ∈ Z+, α(, 0), β ∈ C, P(z) is a non-constant polynomial and Q(z) is a non-zero polynomial.
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2. Some lemmas

We can use these lemmas to prove our theorems.

Lemma 2.1. Let c, a, α be three nonzero constants, k ∈ Z+ be an odd number, and ac , ±(k − 1). If
R1,R2 are two nonzero rational functions satisfying the following differential-difference equations

iα[R1(z + c) − R1(z)] =
k−1∑
i=0

Ci
kR

(k−i)
1 ai,

iα[R2(z + c) − R2(z)] =
k−1∑
i=0

(−1)i+1Ci
kR

(k−i)
2 ai.

(2.1)

Then iαc = kak−1 and Ri are nonzero polynomials with degz Ri ≤ 1 (i = 1, 2).

Wang et al. [14] proved the case of k = 1, below we prove the case of k ≥ 3.

Proof. First, we prove that R1(z) has no poles. On the contrary, suppose that z0 is a pole of R1(z). We
can write (2.1) in a new form

R1(z + c) =

k−1∑
i=0

Ci
kR

(k−i)
1 ai

iα
+ R1(z),

R2(z + c) =

k−1∑
i=0

(−1)i+1Ci
kR

(k−i)
2 ai

iα
+ R2(z).

(2.2)

It is easy to see that z0+c is also a pole of R1(z) by comparing the order of pole z0 on both sides of (2.2).
By recycling this operation, we obtain a sequence of poles of R1(z) that are z0 + 2c, z0 + 3c, · · · , z0 + tc,
this is impossible since R1(z) is a nonzero rational function. Then, R1(z) is a polynomial. Similarly, it
can be inferred that R2(z) also is a polynomial.

Therefore, R1(z) and R2(z) are two nonzero polynomials. Let

R1(z) = apzp + ap−1zp−1 + · · · + a1z + a0, R2(z) = btzt + bt−1zt−1 + · · · + b1z + b0,

where a j ∈ C, j ∈ {0, 1, · · · , p}, b j ∈ C, j ∈ {0, 1, · · · , t}, ap , 0, bt , 0. Substituting R1(z) and
R2(z) into (2.1) and comparing the coefficients of zp−1, zp−2, zt−1, and zt−2 on both sides of these two
equations, we have

iαap pc = C1
kak−1ap p,

iαbttc = C1
kak−1btt,

iα[apC2
pc2 + ap−1(p − 1)c] = C1

kak−1(p − 1)ap−1 +C2
kak−2 p(p − 1)ap,

iα[btC2
t c2 + bt−1(t − 1)c] = C1

kak−1(t − 1)bt−1 −C2
kak−2t(t − 1)bt,

(2.3)

which means 
iαc = kak−1,

(C1
k ac
2 −C2

k )p(p − 1) = 0,

(C1
k ac
2 +C2

k )t(t − 1) = 0.

(2.4)

It follows that iαc = kak−1, p = 0 or 1 and t = 0 or 1. Therefore, this completes the proof of Lemma
2.1. □
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Lemma 2.2. Let c, a, α be three nonzero constants and k ∈ Z+ is an even number. If R1,R2 are two
nonzero rational functions satisfying the following differential-difference equations:

iαeac[R1(z + c) − R1(z)] =
k−1∑
i=0

Ci
kR

(k−i)
1 ai,

iαe−ac[R2(z + c) − R2(z)] =
k−1∑
i=0

(−1)i+1Ci
kR

(k−i)
2 ai.

(2.5)

Then eac = ±1 and Ri are nonzero polynomials with degz Ri ≤ 1 (i = 1, 2).

Proof. First, we prove that R1(z) has no poles. On the contrary, suppose that z0 is a pole of R1(z). We
can write (2.5) in a new form

R1(z + c) =

k−1∑
i=0

Ci
kR

(k−i)
1 ai

iαeac + R1(z),

R2(z + c) =

k−1∑
i=0

(−1)i+1Ci
kR

(k−i)
2 ai

iαeac + R2(z).

(2.6)

Similar to the proof of Lemma 2.1, we can get R1(z) and R2(z) are two nonzero polynomials.
Substituting R1(z) and R2(z) into (2.5) and comparing the coefficients of zp−1, zp−2, zt−1 and zt−2 on
both sides of such two equations, it yields

iαeacap pc = C1
kak−1ap p,

iαe−acbttc = C1
kak−1btt,

iαeac[apC2
pc2 + ap−1(p − 1)c] = C1

kak−1(p − 1)ap−1 +C2
kak−2 p(p − 1)ap,

iαe−ac[btC2
t c2 + bt−1(t − 1)c] = C1

kak−1(t − 1)bt−1 −C2
kak−2t(t − 1)bt,

(2.7)

which means 
eac = ±1,

(C1
k ac
2 −C2

k )p(p − 1) = 0,

(C1
k ac
2 +C2

k )t(t − 1) = 0.

(2.8)

It follows that eac = ±1, p = 0 or 1, and t = 0 or 1. Therefore, this completes the proof of Lemma 2.2.
□

Lemma 2.3. [14] Let R be a nonconstant rational function and p(z) = az + b(a , 0). Denote
A1 = R′ + Rp′, An = A′n−1 + An−1 p′, B1 = R′ − Rp′, Bn = B′n−1 + Bn−1(−p)′. Then

lim
|z|→∞

A′n
R
= 0, lim

|z|→∞

An

R
= an, lim

|z|→∞

B′n
R
= 0, lim

|z|→∞

Bn

R
= (−a)n.

Lemma 2.4. [22] Suppose that f1, f2, · · · , fn(n ≥ 2) are meromorphic functions and g1, g2, · · · , gn are
entire functions satisfying the following conditions:

(i)
n∑

j=1
f jegi ≡ 0;

(ii) g j − gk are not constants for 1 ≤ j < k ≤ n;
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,T (r, f j) = o{T (r, egh−gk)}(r → ∞, r < E), where E is a set of (0,

∞) with finite linear measure.
Then f j ≡ 0 ( j = 1, 2, · · · , n).
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Lemma 2.5. [22] Let f be a meromorphic function of finite order ρ( f ). Write

f (z) = ckzk + ck+1zk+1 + · · · , (ck , 0)

near z = 0 and let {a1, a2,···} and {b1, b2,···} be the zeros and poles of f in C\{0}, respectively. Then

f (z) = zkeQ(z) P1(z)
P2(z)

,

where P1(z) and P2(z) are the canonical products of f formed with the non-null zeros and poles of f ,
respectively, and Q(z) is a polynomial of the degree ≤ ρ( f ).

Lemma 2.6. [22] Suppose that f1(z), f2(z), · · · , fn(z), (n ≥ 3) are meromorphic functions that are not
constants except for fn(z). Furthermore, let

n∑
j=1

f j(z) = 1.

If fn(z) . 0 and
n∑

j=1

N(r,
1
f j

) + (n − 1)
n∑

j=1

N(r, f j) < (λ + o(1))T (r, fk),

where λ < 1 and k = 1, 2, · · · , n − 1, then fn(z) ≡ 1.

3. Proof of Theorem 1.5

Proof. Suppose that Eq (1.2) admits a finite order transcendental meromorphic solution f (z) with
finitely many poles. We can rewrite Eq (1.2) in the following form:

[ f (k)(z) + i(α f (z + c) − β f (z))][ f (k)(z) − i(α f (z + c) − β f (z))] = R(z). (3.1)

Since f (z) has finitely many poles and R(z) is a nonzero rational function, then f (k)(z) + i(α f (z + c) −
β f (z)) and f (k)(z) − i(α f (z + c) − β f (z)) both have finitely many poles and zeros. Thus, in view of
Lemma 2.5, (3.1) can be written as{

f (k)(z) + i(α f (z + c) − β f (z)) = R1ep(z),

f (k)(z) − i(α f (z + c) − β f (z)) = R2e−p(z),
(3.2)

where R1,R2 are two nonzero rational functions such that R1R2 = R and p(z) is a nonzero polynomial.
By solving the above equations system, we have

f (k)(z) =
R1ep(z) + R2e−p(z)

2
,

α f (z + c) − β f (z) =
R1ep(z) − R2e−p(z)

2i
,

(3.3)

In view of the second equation of (3.3), it follows that

α f (k)(z + c) − β f (k)(z) =
Akep(z) − Bke−p(z)

2i
, (3.4)
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where A1 = R′1 + R1 p′, B1 = R′2 − R2 p′, Ak = A′k−1 + Ak−1 p′ and Bk = B′k−1 − Bk−1 p′. Substituting the
first equation of system (3.3) into (3.4), it yields that

ep(z)[iαR1(z + c)ep(z+c)−p(z) − iβR1(z) − Ak(z)]
+e−p(z)[iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + Bk(z)] = 0. (3.5)

By Lemma 2.4, it follows from (3.5) that{
iαR1(z + c)ep(z+c)−p(z) − iβR1(z) − Ak(z) = 0,
iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + Bk(z) = 0.

(3.6)

Since R1,R2 are two nonzero rational functions, which implies that p(z) is a polynomial of degree one.
Let p(z) = az + b, a , 0, b ∈ C. Substituting p(z), Ak, and Bk into (3.6), and letting |z| → ∞, thus, we
can conclude from Lemma 2.3 that

lim
|z|→∞

i(α
R1(z + c)

R1(z)
ep(z+c)−p(z) − β) = i(αeac − β) = lim

|z|→∞

Ak(z)
R1(z)

= ak,

lim
|z|→∞

i(α
R2(z + c)

R2(z)
e−p(z+c)+p(z) − β) = i(αe−ac − β) = lim

|z|→∞

−Bk(z)
R2(z)

= −(−a)k.
(3.7)

Two equations of (3.7), which mean that{
i(αeac − β) = ak,

i(αe−ac − β) = ak.
(3.8)

Hence, it yields eac = ±1.
If eac = 1, then ak = iα − iβ. Thus, we can rewrite (3.6) in the following form:

iα[R1(z + c) − R1(z)] =
k−1∑
i=0

Ci
kR

(k−i)
1 ai,

iα[R2(z + c) − R2(z)] =
k−1∑
i=0

(−1)i+1Ci
kR

(k−i)
2 ai.

(3.9)

If R j( j = 1, 2) are two nonzero rational functions, then in view of Lemma 2.1, it follows that
iαc = kak−1 and Ri are nonzero polynomials with degz Ri ≤ 1 (i = 1, 2). In view of R = R1R2, thus R is
a nonzero polynomial with degz R ≤ 2.

If eac = −1, then ak = −iα − iβ. Thus, we can rewrite (3.6) in the following form
−iα[R1(z + c) − R1(z)] =

k−1∑
i=0

Ci
kR

(k−i)
1 ai,

−iα[R2(z + c) − R2(z)] =
k−1∑
i=0

(−1)i+1Ci
kR

(k−i)
2 ai.

(3.10)

Similar to the discussion above, we can obtain that iαc = −kak−1 and Ri are nonzero polynomials with
degz Ri ≤ 1 (i = 1, 2). In view of R = R1R2, thus R is a nonzero polynomial with degz R ≤ 2.

Hence, we can obtain that iαc = ±kak−1, R is a nonzero polynomial with degz R ≤ 2.
Suppose that R(z) is a nonzero polynomial with degz R ≤ 2, then in view of the first equation of (3.3),

it follows that f (z) is of the form

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
+ ck−1zk−1 + · · · + c0, (3.11)
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where s j(z) = m jz + n j, m j, n j ∈ C( j = 1, 2) and c0, · · · , ck−1 are constants.
If degz R = 2, then it follows that m j , 0( j = 1, 2).
If iαc = kak−1 and ak = i(α − β), then eac = 1, i.e., c = 2lπi

a , l ∈ Z. According to (3.8), if α = β,
we have a = 0, it is a contradiction. If α = −β, then ak = 2iα. Combining iαc = kak−1, ak = 2iα and
eac = 1, we have 1 = eac = e2k, it is a contradiction. Hence, α , ±β. Substituting (3.11) into the second
equation of (3.3), it follows that c0 = · · · = ck−1 = 0, we have

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
. (3.12)

Substituting (3.12) into the first equation of (3.3), it yields

R1(z) = aks1(z) + kak−1m1 and R2(z) = (−a)ks2(z) + kak−1m2. (3.13)

Substituting (3.12) into the second equation of (3.3), it yields

R1(z) = aks1(z) + m1 and R2(z) = (−a)ks2(z) − m2. (3.14)

Comparing (3.13) and (3.14), we have kak−1 = 1 and kak−1 = −1, it is a contradiction.
If iαc = −kak−1 and ak = −i(α + β), then eac = −1, i.e., c = (2l+1)πi

a , l ∈ Z. Similar to the discussion
above, we can obtain a contradiction. Therefore, there are two categories below:
Case I: If degz R = 1, one of m1 and m2 is zero, without loss of generality, assume m2 = 0.
Substituting (3.12) into (3.3), it follows that R1 is a polynomial of degree one and R2 is a constant,
where iαc = kak−1 = 1 and ak = i(α − β) or iαc = −kak−1 = −1 and ak = −i(α + β). Similar to the
discussion above, it is easy to prove that α , ±β and c0 = · · · = ck−1 = 0.

Therefore, f (z) is of the form

f (z) =
s1(z)eaz+b + n2e−(az+b)

2
,

where R(z) = −n2a2k−1[as1(z) + km1], m1 , 0, a , 0, b ∈ C, and a, b, c, α, β satisfy α , ±β, ak =

−i(α + β), c = (2l+1)πi
a , l ∈ Z, iαc = −kak−1 = −1, or ak = i(α − β), c = 2lπi

a , l ∈ Z, iαc = kak−1 = 1.
If m1 = 0, similar to the discussion above, it is easy to prove that f (z) is of the form

f (z) =
n1eaz+b + s2e−(az+b)

2
,

where R(z) = n1a2k−1[−as2(z) + km2], m2 , 0, a , 0, b ∈ C, and a, b, c, α, β satisfy α , ±β, ak =

−i(α + β), c = (2l+1)πi
a , l ∈ Z, iαc = kak−1 = −1, or ak = i(α − β), c = 2lπi

a , l ∈ Z, iαc = −kak−1 = 1.
Case II: If R(z) is a nonzero constant, by using the first equation of (3.3), it follows that f (z) is of the
form

f (z) =
n1eaz+b + n2e−(az+b)

2
+ ck−1zk−1 + · · · + c0, (3.15)

where n1, n2 ∈ C and c0, · · · , ck−1 ∈ C. Substituting (3.15) into the second equation of (3.3), it yields
R = −a2kn1n2.

(II1) If α = β, in view of (3.8), it follows that eac = ±1. If eac = 1, then a = 0, as iα(eac − 1) = ak,
a contradiction. Thus, eac = −1. Hence, it follows that c = (2l+1)πi

a , l ∈ Z, ak = −2iα, and c0 ∈ C,
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c1 = · · · = ck−1 = 0.
(II2) If α = −β, in view of (3.8), it follows that eac = ±1. If eac = −1, then a = 0, as iα(eac+1) = ak,

a contradiction. Thus, eac = 1. Hence, it follows that c = 2lπi
a , l ∈ Z, ak = 2iα, and c0 = · · · = ck−1 = 0.

(II3) If α , ±β, substituting (3.15) into the second equation of (3.3), it yields c0 = · · · = ck−1 = 0.
In view of (3.8), it follows that eac = ±1. If eac = 1, it follows that c = 2lπi

a and ak = i(α − β), l ∈ Z. If
eac = −1, it follows that c = (2l+1)π

a and ak = −i(α + β), l ∈ Z. Therefore, this completes the proof of
Theorem 1.5. □

4. Proof of Theorem 1.6

Proof. Similar to the method of proving Theorem 1.5, we can obtain the expression (3.8).
When k is an even number, two equations of (3.7), which mean that{

i(αeac − β) = ak,

i(αe−ac − β) = −ak.
(4.1)

Hence, it follows a2k = α2 − β2.
Case I: If α = ±β, this is a contradiction with a , 0.
Case II: If α , ±β. Substituting p(z) = az + b and (4.1) into (3.6), it yields

iαeac[R1(z + c) − R1(z)] =
k−1∑
i=0

Ci
kR

(k−i)
1 ai,

iαe−ac[R2(z + c) − R2(z)] =
k−1∑
i=0

(−1)i+1Ci
kR

(k−i)
2 ai.

(4.2)

Suppose that R1,R2 are nonzero rational functions; in view of Lemma 2.2, we can conclude that
eac = ±1 and Ri are nonzero polynomials with degz Ri ≤ 1 (i = 1, 2). In view of R = R1R2, thus R is a
nonzero polynomial with degz R ≤ 2. Set degz R1 = p and degz R2 = t.

When p = 1 and t = 1, if eac = 1, then from (4.1), it follows that iα − iβ = ak and iα − iβ = −ak,
a contradiction. If eac = −1, then from (4.1), it follows that −iα − iβ = ak and −iα − iβ = −ak, a
contradiction. Hence, there is at most a polynomial of degree one in R1 and R2.

(II1) Suppose that p = 1, t = 0. In view of (3.3), it follows that f is of the form

f (z) =
s1(z)eaz+b + n2e−(az+b)

2
+ P(z), (4.3)

where a , 0, b ∈ C, s1(z) = m1z + n1, m1(, 0), n1, n2 ∈ C, and P(z) is a polynomial of degree k − 1.
Since α , β, then it yields from the second equation of (3.3) that P(z) ≡ 0. And by using the first
equation in (4.2), it follows that iαeacc = kak−1. Hence, f (z) is of the form

f (z) =
s1(z)eaz+b + n2e−(az+b)

2
,

where a2k = α2 − β2, b ∈ C, c =
log ak+iβ

iα + 2lπi
a

, l ∈ Z, eac = kak−1

iαc , ±1 and R = n2a2k−1[as1(z) + km1].
Suppose that p = 0, t = 1. Similar to the above argument as in (II1), we obtain

f (z) =
n1eaz+b + s2(z)e−(az+b)

2
,
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where a2k = α2 − β2, b ∈ C, c =
log ak+iβ

iα + 2lπi
a

, l ∈ Z, eac = iαc
kak−1 , ±1 and R = n1a2k−1[as2(z) − km2].

(II2) Suppose that p = 0, t = 0. By using (3.3), it follows that f is of the form

f (z) =
n1eaz+b + n2e−(az+b)

2
+ P(z), (4.4)

where a , 0, b ∈ C, n1, n2 ∈ C\{0}, and P(z) is a polynomial of degree k − 1. Since α , β, then it
yields from the second equation of (3.3) that P(z) ≡ 0. Hence, f (z) is of the form

f (z) =
n1eaz+b + n2e−(az+b)

2
,

where a2k = α2 − β2, b ∈ C, c =
log ak+iβ

iα + 2lπi
a

, l ∈ Z and R = a2kn1n2. Therefore, this completes the
proof of Theorem 1.6. □

5. Proof of Theorem 1.8

Proof. Suppose, on the contrary, to the assertion that there exists a transcendental entire solution f
of (1.4) with finite order. We aim for a contradiction. By using a similar reason as in the proof of
Theorem 1.5, we obtain

f (k)(z) =
Q1(z)eh(z) + Q2(z)e−h(z)

2
(5.1)

and

α f (z + c) − β f (z) =
Q1(z)eh(z) − Q2(z)e−h(z)

2iP(z)
, (5.2)

where h(z) is a non-constant polynomial, Q1(z) and Q2(z) are non-zero polynomials such that
Q1(z)Q2(z) = Q(z). Combining (5.1) and (5.2), we obtain

α f (k)(z + c) − β f (k)(z)

=
αQ1(z + c)eh(z+c) + αQ2(z + c)e−h(z+c)

2
−
βQ1(z)eh(z) + βQ2(z)e−h(z)

2

=
h1(z)eh(z) − h2(z)e−h(z)

2iP(z)k+1 , (5.3)

where

h1(z) =
k−1∑
i=0

Ci
k−1

k−i∑
t=0

Ct
k−iQ

(k−t−i)
1 [(h′)t + Mt(h, h′, · · · , h(t))]P(i)Pk−1

−

k−1∑
i=0

Ci
k−1

i∑
t=0

Ct
iQ

(h−t)
1 [(h′)t + Mt(h, h′, · · · , h(t))]P(k−i)Pk−1 + o(h1(z)),

h2(z) =
k−1∑
i=0

Ci
k−1

k−i∑
t=0

Ct
k−iQ

(k−t−i)
2 [(h′)t + Nt(h, h′, · · · , h(t))]P(i)Pk−1
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−

k−1∑
i=0

Ci
k−1

i∑
t=0

Ct
iQ

(h−t)
2 [(h′)t + Nt(h, h′, · · · , h(t))]P(k−i)Pk−1 + o(h2(z)),

Mt and Nt are differential polynomials of (h, h′, · · · , h(t)). Thus from (5.3), we get

h1(z) + βiP(z)k+1Q1(z)
αiP(z)k+1Q2(z + c)

eh(z)+h(z+c) −
h2(z) − βiP(z)k+1Q2(z)
αiP(z)k+1Q2(z + c)

eh(z+c)−h(z)

−
Q1(z + c)
Q2(z + c)

e2h(z+c) ≡ 1. (5.4)

It is easy to see that both
h1(z) + βiP(z)k+1Q1(z)
αiP(z)k+1Q2(z + c)

eh(z)+h(z+c) and
Q1(z + c)
Q2(z + c)

e2h(z+c) are not constants. Using

Lemma 2.6, we obtain −[h2(z) − βiP(z)k+1Q2(z)]eh(z+c)−h(z) = αiP(z)k+1Q2(z + c), so h(z) = Az + B, A is
a non-zero constant, and B is a constant. Thus, we obtain

iP(z)k+1[βQ2(z)eAc − αQ2(z + c)] = h2(z)eAc. (5.5)

Set deg(P(z)) = p, deg(Q(z)) = q, deg(Q1(z)) = q1, deg(Q2(z)) = q2 and deg(h(z)) = h. By comparing
the degree of both sides of (5.5), it is not difficult to find that the degree of the left hand-side is
(k+1)p+q2 or (k+1)p+q2−1, and the degree of right-hand side is kp+q2−1; this is a contradiction.
Therefore, this completes the proof of Theorem 1.8. □
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