Research article Special Issues

Double circulant codes for the Lee and Euclidean distance

  • Received: 05 June 2023 Revised: 13 July 2023 Accepted: 24 July 2023 Published: 31 July 2023
  • MSC : 94B60, 94B75

  • This paper investigates double circulant codes of length $ 2n $ over $ \mathbb{Z}_{{{p^m}}} $ where $ p $ is an odd prime, $ n $ goes to infinity, and $ m\ge 1 $ is a fixed integer. Using random coding, we obtain families of asymptotically good Lee codes over $ \mathbb{Z}_{{{p^m}}} $ in the case of small and large alphabets, and asymptotically good Euclidean codes over $ \mathbb{Z}_{{{p^m}}} $ for small alphabets. We use Euclidean codes to construct spherical codes, and Lee codes to construct insertion/deletion codes, by a projection technique due to (Yaglom, 1958) for spherical codes, and to (Sok et al., 2018) for deletion codes.

    Citation: Adel Alahmadi, Altaf Alshuhail, Alaa Altassan, Hatoon Shoaib, Patrick Solé. Double circulant codes for the Lee and Euclidean distance[J]. AIMS Mathematics, 2023, 8(10): 23566-23577. doi: 10.3934/math.20231198

    Related Papers:

  • This paper investigates double circulant codes of length $ 2n $ over $ \mathbb{Z}_{{{p^m}}} $ where $ p $ is an odd prime, $ n $ goes to infinity, and $ m\ge 1 $ is a fixed integer. Using random coding, we obtain families of asymptotically good Lee codes over $ \mathbb{Z}_{{{p^m}}} $ in the case of small and large alphabets, and asymptotically good Euclidean codes over $ \mathbb{Z}_{{{p^m}}} $ for small alphabets. We use Euclidean codes to construct spherical codes, and Lee codes to construct insertion/deletion codes, by a projection technique due to (Yaglom, 1958) for spherical codes, and to (Sok et al., 2018) for deletion codes.



    加载中


    [1] A. Alahmadi, F. Özdemir, P. Solé, On self-dual double circulant codes, Des. Codes Cryptogr., 86 (2018), 1257–1265. https://doi.org/10.1007/s10623-017-0393-x doi: 10.1007/s10623-017-0393-x
    [2] J. Astola, The theory of Lee-codes, Lappeenranta University of Technology, 1982.
    [3] J. Astola, On the asymptotic behaviour of Lee-codes, Discrete Appl. Math., 8 (1984), 13–23. https://doi.org/10.1016/0166-218X(84)90074-X doi: 10.1016/0166-218X(84)90074-X
    [4] G. Bini, F. Flamini, Finite commutative rings and their applications, Springer, 2002. https://doi.org/10.1007/978-1-4615-0957-8
    [5] C. L. Chen, W. W. Peterson, E. J. Weldon, Some results on quasi-cyclic codes, Inf. Control, 15 (1969), 407–423. https://doi.org/10.1016/S0019-9958(69)90497-5 doi: 10.1016/S0019-9958(69)90497-5
    [6] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Springer, 1993.
    [7] T. Ericson, V. Zinoviev, Codes on Euclidean spheres, North-Holland, 2001.
    [8] D. Gardy, P. Solé, Saddle point techniques in asymptotic coding theory, In: G. Cohen, A. Lobstein, G. Zémor, S. Litsyn, Algebraic coding, Lecture Notes in Computer Science, Springer, 573 (1992), 75–81. https://doi.org/10.1007/BFb0034343
    [9] W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077
    [10] G. Lachaud, J. Stern, Polynomial-time construction of codes. Ⅱ. spherical codes and the kissing number of spheres, IEEE Trans. Inf. Theory, 40 (1994), 1140–1146. https://doi.org/10.1109/18.335961 doi: 10.1109/18.335961
    [11] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes. Ⅰ. Finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751–2760. https://doi.org/10.1109/18.959257 doi: 10.1109/18.959257
    [12] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes Ⅱ: chain rings, Des. Codes Cryptogr., 30 (2003), 113–130. https://doi.org/10.1023/A:1024715527805 doi: 10.1023/A:1024715527805
    [13] P. Moree, Artin's primitive root conjecture–a survey, Integers, 12 (2012), 1305–1416. https://doi.org/10.1515/integers-2012-0043 doi: 10.1515/integers-2012-0043
    [14] M. Shi, A. Alahmadi, P. Solé, Codes and rings: theory and practice, Academic Press, 2017. https://doi.org/10.1016/C2016-0-04429-7
    [15] M. Shi, D. Huang, L. Sok, P. Solé, Double circulant self-dual and LCD codes over Galois rings, Adv. Math. Commun., 13 (2019), 171–183. https://doi.org/10.3934/amc.2019011 doi: 10.3934/amc.2019011
    [16] M. Shi, L. Qian, P. Solé, On self-dual negacirculant codes of index two and four, Des. Codes Cryptogr., 86 (2018), 2485–2494. https://doi.org/10.1007/s10623-017-0455-0 doi: 10.1007/s10623-017-0455-0
    [17] M. Shi, H. Zhu, L. Qian, P. Solé, On self-dual four circulant codes, Int. J. Found. Comput. Sci., 29 (2018), 1143–1150. https://doi.org/10.1142/S0129054118500259 doi: 10.1142/S0129054118500259
    [18] L. Sok, J. C. Belfiore, P. Solé, A. Tchamkerten, Lattice codes for the deletion and repetition channels, IEEE Trans. Inf. Theory, 64 (2018), 1595–1603. https://doi.org/10.1109/TIT.2018.2791990 doi: 10.1109/TIT.2018.2791990
    [19] P. Solé, J. C. Belfiore, Constructive spherical codes near the Shannon bound, Des. Codes Cryptogr., 66 (2013), 17–26. https://doi.org/10.1007/s10623-012-9633-2 doi: 10.1007/s10623-012-9633-2
    [20] Z. X. Wan, Lectures on finite fields and Galois rings, World Scientific, 1997. https://doi.org/10.1142/5350
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1193) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog