Linear codes with complementary-duals (LCD codes) are linear codes that trivially intersect with their dual (Massey, 1992). In this paper, we study double circulant codes (DC codes), which are a special class of quasi-cyclic codes, over $ \mathbb{F}_4 $ that are LCD. The main techniques used are as follows: Chinese reminder theory (CRT) decomposition in the line of (Ling et al. 2001), explicit enumeration, and asymptotics. In particular, we show that the class of codes considered here is asymptotically good.
Citation: Hatoon Shoaib. Double circulant complementary dual codes over $ \mathbb{F}_4 $[J]. AIMS Mathematics, 2023, 8(9): 21636-21643. doi: 10.3934/math.20231103
Linear codes with complementary-duals (LCD codes) are linear codes that trivially intersect with their dual (Massey, 1992). In this paper, we study double circulant codes (DC codes), which are a special class of quasi-cyclic codes, over $ \mathbb{F}_4 $ that are LCD. The main techniques used are as follows: Chinese reminder theory (CRT) decomposition in the line of (Ling et al. 2001), explicit enumeration, and asymptotics. In particular, we show that the class of codes considered here is asymptotically good.
[1] | C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, Linear codes over $ \mathbb{F}_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inf. Theory, 64 (2018), 3010–3017. https://doi.org/10.1109/TIT.2018.2789347 doi: 10.1109/TIT.2018.2789347 |
[2] | C. Carlet, S. Guilley, Coding theory and applications, Springer, 2015. https://doi.org/10.1007/978-3-319-17296-5-9 |
[3] | S. T. Dougherty, J. L. Kim, B. Ozkaya, L. Sok, P. Solé, The combinatorics of LCD codes: linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4 (2017), 116–128. https://doi.org/10.1504/IJICOT.2017.083827 doi: 10.1504/IJICOT.2017.083827 |
[4] | Bounds on the minimum distance of linear codes and quantum codes, Markus Grassl, 2023. Available from: http://www.codetables.de. |
[5] | C. Güneri, B. Özkaya, P. Solé, Quasi-cyclic complementary dual codes, Finite Fields Appl., 42 (2016), 67–80. https://doi.org/10.1016/j.ffa.2016.07.005 doi: 10.1016/j.ffa.2016.07.005 |
[6] | D. R. Heath-Brown, Artin's conjecture for primitive roots, Q. J. Math., 37 (1986), 27–38. |
[7] | W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, 2003. |
[8] | S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes I: finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751–2760. https://doi.org/10.1109/18.959257 doi: 10.1109/18.959257 |
[9] | F. J. MacWilliams, N. J. A. Sloane, J. G. Thompson, Good self dual codes exist, Discrete Math., 3 (1972), 153–162. https://doi.org/10.1016/0012-365X(72)90030-1 |
[10] | J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365X(92)90563-U doi: 10.1016/0012-365X(92)90563-U |
[11] | P. Moree, Artin's primitive root conjecture–a survey, Integers, 12 (2012), 0043. https://doi.org/10.1515/integers-2012-0043 doi: 10.1515/integers-2012-0043 |
[12] | M. Shi, N. Liu, F. Özbudak, P. Solé, Additive cyclic complementary dual codes over $ \mathbb{F}_4$, Finite Fields Appl., 83 (2022), 102087. https://doi.org/10.1016/j.ffa.2022.102087 doi: 10.1016/j.ffa.2022.102087 |
[13] | M. Shi, H. Zhu, L. Qian, P. Solé, On self-dual four circulant codes, Int. J. Found. Comput. Sci., 29 (2018), 1143–1150. https://doi.org/10.1142/S0129054118500259 doi: 10.1142/S0129054118500259 |