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Abstract: Linear codes with complementary-duals (LCD codes) are linear codes that trivially intersect
with their dual (Massey, 1992). In this paper, we study double circulant codes (DC codes), which are
a special class of quasi-cyclic codes, over F4 that are LCD. The main techniques used are as follows:
Chinese reminder theory (CRT) decomposition in the line of (Ling et al. 2001), explicit enumeration,
and asymptotics. In particular, we show that the class of codes considered here is asymptotically good.
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1. Introduction

Linear codes with complementary-duals (LCD codes) were introduced by Massey in 1992 to solve
an information theory problem [10]. In the last decade, they gained a lot of attention due to their
importance in Boolean masking, which is an important countermeasure against side-channel attacks in
cryptography [2]. A survey of the mathematical problems raised by LCD codes, algebraic constructions
and possibility bounds is given in [3]. Very recently, the notion was generalized to additive codes over
F4 under the name of additive complementary-dual (ACD) codes [12] .

In the present paper, we study LCD codes over F4 with a quasi-cyclic structure. Note that the
existence of an algorithm to turn any quaternary linear code into an equivalent LCD code [1] should
not deter researchers from looking for quaternary LCD codes with a special structure. In particular,
we study the family of double circulant codes, which is a family of quasi-cyclic codes of index two.
We enumerate the codes of this family for a given length by using the Chinese reminder theory (CRT)
approach given in [8]. For a similar approach with a different CRT decomposition, the reader is referred
to [5]. Building on these enumeration results, we show that the family of double circulant (DC) LCD
codes is asymptotically good by the standard expurgated random coding method, a classical example
of which is found in [9]. To simplify matters, we require the primitive root conjecture of Artin [10]
to ensure that xn − 1 has only three irreducible factors over F4[x] for infinitely many primes n. This
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asymptotic performance is confirmed by numerical examples of modest lengths.
The rest of the paper is organized as follows: Section 2 contains the basic notions and notations

needed for the other sections. Section 3 develops the CRT methodology in our context. Section 4
builds on the previous section to enumerate the family of DC LCD codes over F4. Section 5 establishes
the asymptotic performance of the said family. Section 6 collects numerical examples. Section 7
concludes the paper, and points out some challenging open problems.

2. Preliminaries

Let F2 = {0, 1} be the finite field of order 2 and F4 = {0, 1, ω, ω} represent the finite field of order 4,
where ω = ω2 = ω + 1, ω3 = 1.

Definition 2.1. A generator matrix of a linear code C of parameters [N,K] over F4 is a K×N generator
matrix G with entries in F4 such that C = {xG : x ∈ FK

4 }.

Definition 2.2. An n × n-matrix is called a circulant matrix if each row is obtained from the previous
one by a cyclic shift over one position to the right:

A =


a0 a1 ... an−2 an−1

an−1 a0 ... an−3 an−2

. . . .

. . . .

a1 a2 ... an−1 a0


.

It is well known that the algebra of n×n circulant matrices over the field Fq is isomorphic to the algebra
of polynomials in the ring Fq[x]/(xn − 1).

Definition 2.3. A linear block code C of length n = ml over a finite field Fq is called a quasi-cyclic
(QC) code of index l if for every codeword c ∈ C, there exists a number l such that the codeword
obtained by l cyclic shifts is also a codeword in C. That is,

c = (c0, c1, ..., cn−1) ∈ C ⇒ c′ = (cn−l, ..., c0, ..., cn−l−1) ∈ C.

The index of C is the smallest l > 0 that satisfies this definition.

Remark 2.4. Quasi-cyclic codes are a generalization of cyclic codes; that is, cyclic codes are quasi-
cyclic codes with l = 1.

Definition 2.5. A double-circulant (DC) code C is a linear code over F4 with a generator matrix
G = (I, A) where I is the identity matrix and A is circulant.

Thus, C is a QC code of even length of index l = 2. Note that not all QC codes of index 2 can afford
such a generator matrix.

If A has order n, then C has a size of 4n since its generator matrix has rank n. We refer to C as
a [2n, n] code.

Definition 2.6. The dual C⊥ of a linear code C of length n over F4 is defined as follows:

C⊥ = {u ∈ Fn
4 | ∀v ∈ C, (u, v) = 0},

where (u, v) =
n∑

i=1
uivi is the standard inner product of u, v ∈ Fn

4.
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Definition 2.7. A linear code over F4 is linear complementary dual (LCD) if it intersects with its dual
trivially: C

⋂
C⊥ = {0}.

Definition 2.8. A code C is self-dual iff C = C⊥.

Classically, the three parameters of a linear code are concisely expressed as [N, k, d]. Here, d is the
smallest pairwise Hamming distance between two nonzero codewords.

If Cm is a family of linear codes of parameters [m, km, dm], the rate R and relative distance δ are
defined as follows:

R = lim sup
m→∞

km

m

and
δ = lim inf

m→∞

dm

m
.

Such a family of codes is said to be good if Rδ , 0.
Recall from [7, Section 2.10.3] that the 4-ary entropy function H4: [0, 3/4] → R is defined as

follows:
H4(y) = y log4 3 − y log4(y) − (1 − y) log4(1 − y).

3. Algebraic structure

In this paper, we assume that n is odd. Every double circulant code of length 2n may be thought of
as a code of length 2 over the ring R = F4[x]/(xn − 1), as stated in [8].

We consider DC codes of length 2n and index 2 over F4. These are (2n, 4
n
2 ) codes over F4, where

the codewords are closed under two shifts. In other words, a DC code is an index 2 quasi-cyclic code.
We assume that the factorization of xn − 1 into irreducible polynomials over F4 is of the following

form:

xn − 1 = α(x − 1)
s∏

i=2

gi(x)
t∏

j=1

h j(x)h∗j(x),

where α ∈ F∗4, gi a self-reciprocal polynomial with degree 2di, the polynomial h j is of degree e j, and ∗
denoted reciprocation.

We next use the CRT to break down this ring, we have

R ≃
( s⊕

i=1

F4[x]
< gi(x) >

)
⊕

( t⊕
j=1

(
F4[x]
< h j(x) >

⊕
F4[x]
< h∗j(x) >

)
.

For simplicity, we let

Gi =
F4[x]
< gi(x) >

, H′j =
F4[x]
< h j(x) >

, H′′j =
F4[x]
< h∗j(x) >

.

This decomposition naturally extends to R2 as

R2 ≃

( s⊕
i=1

G2
i

)
⊕

( t⊕
j=1

(H
′2
j ⊕ H

′′2
j )
)
.
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In particular,

R2 ≃

( s⊕
i=1

Ci

)
⊕

( t⊕
j=1

(C′j ⊕ C
′′
j )
)
,

where Ci is a linear code over Gi of length 2 for each 1 ≤ i ≤ s, and C′j is a linear code over H′j of
length 2 and C′′j is a linear code over H′′j of length 2 for each 1 ≤ j ≤ t. These codes are called the
constituents of C.

The next result is essential to characterize the duality properties of our QC codes in terms of their
constituent codes. For the definition of the hermitian inner product used in that characterization, we
refer to [8].

Lemma 3.1. A QC DC code is:

(1) Self-dual if the constituents Ci are self-dual for the hermitian inner product and (C′i ,C
′′
i ) are dual

pairs for the Euclidean inner product.

(2) LCD if the constituents Ci are LCD for the hermitian inner product and C′i (resp. C′′i ) has trivial
intersection with the dual of C′′i (resp. the dual of C′i).

The first assertion follows [8]. The second assertion is the index 2 case of [5, Theorem 3.1].

4. Enumeration

In this section, we provide enumerative findings for self-orthogonal double circulant codes and LCD
double circulant codes.

In order to simplify the analysis, we are looking for integers n that minimize the number of
irreducible factors xn − 1. Note that xn − 1 factors as a product of two irreducible polynomials over the
binary field F2 iff n is an odd prime, for which 2 is a primitive root. Upon assuming Artin’s
conjecture, proved under generalized Riemann hypothesis (GRH) by Hooley, and “almost proved” by
Heath-Brown [6], there are infinitely many primes n which satisfy this condition [11]. In that
situation, it can be seen that

xn − 1 = (x + 1)h′h′′

over F4 with h′, h′′ of degree (n−1)
2 .

Proposition 4.1. Let n denote an odd prime. If xn − 1 factors as a product of three irreducible
polynomials over F4, then the number of self-dual double circulant codes of length 2n is 4

n−1
2 − 1.

Proof. We use the algebraic structure from the previous section, where xn−1 is factored into irreducible
polynomials as follows:

xn − 1 = (x − 1)h′h′′

with h, h′′ of degree (n−1)
2 . Then, if s = 1 and t = 1, here we have: G1 ≃ F4 and H′1 ≃ H′′1 ≃ FQ, with

Q = 4
n−1

2 .

Now, we apply (1) of Lemma 3.1. There is only one possibility for C1: the repetition code of length 2.
Writing

C′1 =< [1, A′] >
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and
C′′1 =< [1, A′′] >,

we see that these two codes are dual pairs iff A′A′′ = 1. Since A′ is arbitrary nonzero in FQ the result
follows. □

The counterpart for LCD codes is as follows:

Proposition 4.2. Let n denote an odd prime. If xn − 1 factors as a product of three irreducible
polynomials over F4, then the number of LCD double circulant codes over F4 of length 2n is
2(4

n−1
2 − 1)(4

n−1
2 − 2).

Proof. Similar to the previous proof, we have G1 ≃ F4 and H′1 ≃ H′′1 ≃ FQ, with Q = 4
n−1

2 . Now, we
apply (2) of Lemma 3.1.

There are two possible LCD codes for C1: < [1, ω] > and < [1, ω2] > .Writing

C′1 =< [1, A′] >

and
C′′1 =< [1, A′′] >,

we see that these two codes satisfy the said condition iff A′A′′ , 1. □

5. Asymptotics

In this section, we assume that n be an odd prime such that xn − 1 has only three irreducible factors
as

xn − 1 = (x − 1)h′h′′.

Let a(x) denote a polynomial of F4[x], and let Ca be the LCD double circulant code with the generator
matrix [1, a] ∈ R1×2.

Lemma 5.1. If v = ( f , g) ∈ R2, with f , g non zero, then there are at most 4
n+1

2 polynomials a such that

v ∈ Ca =< [1, a] > .

Proof. Let v = ( f , g), with f , g are in R. By the CRT, the condition v ∈ Ca is equivalent to the system
of equations

g(1) = a(1) f (1),

g(ξ) = a(ξ) f (ξ),

g(ξ2) = a(ξ2) f (ξ2),

where ξ ∈ F4n−1 , h′(ξ) = 0. Since the third equation is the conjugate of the second, it can be forgotten
in the following discussion. For the rest of the proof, for simplicity, we write g′ = g(ξ), g′′ = g(ξ2) and
so on. To determine a′, we distinguish the following cases:

(a) If f ′ , 0, then a′ = g′

f ′ has a unique solution.
(b) If f ′ = 0, then

(i) If g′ , 0, we have no solution.
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(ii) If g′ = 0, then a′ is undetermined and we have at most 4
n−1

2 choices for a′.

By definition, we have at most 4 values for a(1). Hence, we have at most 4
n+1

2 choices for a. □

Now, we can state and prove the main result of this section.

Theorem 5.2. For every ϵ > 0, there is a sequence of LCD double circulant codes with relative distance

δ ≥ H−1
4 (1/4) + ϵ

and rate 1/2. This family of codes is asymptotically good.

Proof. The number of double circulant codes containing a vector of weight d ≃ 2δn or less are by
standard entropic estimates of Hamming balls volumes [7, Lemma 2.10.3] and Lemma 5.1 of the order
O(4n/2+2nH4(δ)) up to subexponential terms. This number will be less than the total number of LCD
double circulant codes, which is by Proposition 4.2 of the order of Ω(4n), provided that

4n > 4n/2+2nH4(δ)+ϵ

holds for n→ ∞.
This condition reduces, after taking log4, dividing by n, and taking limits, to the condition

−
1
2
+ 2H4(δ) ≤ −ϵ

for all ϵ > 0.
The first assertion follows and implies the second since our codes have constant rate 1/2. □

6. Numerical examples

In view of [1], we should expect the minimum distance d of [2n, n] LCD codes over F4 to be as high
as that of the best linear [2n, n] codes over F4, denoted here by dG, as listed in [4]. In Table 1, we give
these three parameters for a DC code with generator matrix (1, a(x)). The vector of coefficients of a(x)
is denoted by a.

Table 1. Parameters of LCD DC codes.

n dG d a
3 4 4 (ω, 1, 1)
4 4 4 (1, 0, 1, ω2)
5 5 5 (0, ω2, ω, 1, ω)
6 5 5 (ω2, 1, ω2, 0, 1, 0)
7 6 6 (ω, 1, 1, ω, ω2, ω2, ω2)
8 6 6 (0, ω, ω2, ω, 0, ω2, ω, ω)
9 8 6 (ω2, ω2, 0, ω, ω, 0, 1, 0, ω2)
10 8 7 (ω, 0, 0, ω, 0, ω, ω2, ω, ω2, 0)
11 8-9 7 (0, ω2, 1, 1, ω2, ω, ω, ω2, 1, ω, ω2)
12 8 8 (ω2, 1, 0, ω2, 0, 1, ω, 0, ω2, 1, 1, ω)
13 10 8 (ω2, 0, ω2, 0, ω, ω2, ω, ω2, 1, ω, 0, 0, ω2)
14 11 9 (0, 1, ω, ω, ω, ω, ω2, ω2, ω, ω, 0, 1, ω, 0)
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7. Conclusions and open problems

In this paper, we have investigated thr enumeration, and asymptotic performance of the class of
LCD double circulant codes over F4. The analysis of quasi-cyclic codes by the CRT method of [8] has
been the main technical tool. We derived a modified GV bound for this class of codes (Theorem 5.2).
Proving similar asymptotic results for self-dual double circulant codes would require a sharpening of
Lemma 5.1, in view of the small quantity of self-dual codes (Proposition 4.1) .

One avenue of research includes the extension of this work to other finite fields and to Galois rings.
Staying over F4 but changing the index, and therefore the rate of the codes considered, is also worthy of
attention. For example, we are thinking of the four circulant constructions studied in [13] to construct
linear complementary dual codes.
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