Research article

Extended CODAS method for MAGDM with $ 2 $-tuple linguistic $ T $-spherical fuzzy sets

  • Received: 03 August 2022 Revised: 29 August 2022 Accepted: 04 September 2022 Published: 21 November 2022
  • MSC : 03E72, 03E75, 90B50

  • In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic $ T $-spherical fuzzy numbers (2TL$ T $-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TL$ T $-SF Hamacher (2TL$ T $-SFH) operators by using innovative operational rules. These operators include the 2TL$ T $-SFH weighted average (2TL$ T $-SFHWA) operator, 2TL$ T $-SFH ordered weighted average (2TL$ T $-SFHOWA) operator, 2TL$ T $-SFH hybrid average (2TL$ T $-SFHHA) operator, 2TL$ T $-SFH weighted geometric (2TL$ T $-SFHWG) operator, 2TL$ T $-SFH ordered weighted geometric (2TL$ T $-SFHOWG) operator, and 2TL$ T $-SFH hybrid geometric (2TL$ T $-SFHHG) operator. In addition, we discuss the properties of 2TL$ T $-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TL$ T $-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions.

    Citation: Muhammad Akram, Sumera Naz, Gustavo Santos-García, Muhammad Ramzan Saeed. Extended CODAS method for MAGDM with $ 2 $-tuple linguistic $ T $-spherical fuzzy sets[J]. AIMS Mathematics, 2023, 8(2): 3428-3468. doi: 10.3934/math.2023176

    Related Papers:

  • In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic $ T $-spherical fuzzy numbers (2TL$ T $-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TL$ T $-SF Hamacher (2TL$ T $-SFH) operators by using innovative operational rules. These operators include the 2TL$ T $-SFH weighted average (2TL$ T $-SFHWA) operator, 2TL$ T $-SFH ordered weighted average (2TL$ T $-SFHOWA) operator, 2TL$ T $-SFH hybrid average (2TL$ T $-SFHHA) operator, 2TL$ T $-SFH weighted geometric (2TL$ T $-SFHWG) operator, 2TL$ T $-SFH ordered weighted geometric (2TL$ T $-SFHOWG) operator, and 2TL$ T $-SFH hybrid geometric (2TL$ T $-SFHHG) operator. In addition, we discuss the properties of 2TL$ T $-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TL$ T $-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions.



    加载中


    [1] Y. Akao, Development history of quality function deployment, Customer Driven Approach Qual. Plann. Deployment, 339 (1994), 90.
    [2] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1142/9789814261302_0021
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [4] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [5] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [6] J. Ali, A q-rung orthopair fuzzy MARCOS method using novel score function and its application to solid waste management, Appl. Intell., 52 (2022), 8770–8792. https://doi.org/10.1007/s10489-021-02921-2 doi: 10.1007/s10489-021-02921-2
    [7] J. Ali, Z. Bashir, T. Rashid, W. K. Mashwani, A q-rung orthopair hesitant fuzzy stochastic method based on regret theory with unknown weight information, J. Amb. Intel. Hum. Comp., 2022. https://doi.org/10.1007/s12652-022-03746-8
    [8] B. C. Cuong, V. Kreinovich, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032
    [9] F. K. Gündoğdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [10] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [11] S. Mahnaz, J. Ali, M. A. Malik, Z. Bashir, T-spherical fuzzy Frank aggregation operators and their application to decision making with unknown weight information, IEEE Access, 10 (2021), 7408–7438. https://doi.org/10.1109/ACCESS.2021.3129807 doi: 10.1109/ACCESS.2021.3129807
    [12] J. Ali, A novel score function based CRITIC-MARCOS method with spherical fuzzy information, Comput. Appl. Math., 40 (2021), 280. https://doi.org/10.1007/s40314-021-01670-9 doi: 10.1007/s40314-021-01670-9
    [13] H. Garg, K. Ullah, T. Mahmood, N. Hassan, N. Jan, T-spherical fuzzy power aggregation operators and their applications in multi-attribute decision making, J. Amb. Intel. Hum. Comp., 12 (2021), 9067–9080. https://doi.org/10.1007/s12652-020-02600-z doi: 10.1007/s12652-020-02600-z
    [14] F. Karaaslan, M. A. D. Dawood, Complex T-spherical fuzzy Dombi aggregation operators and their applications in multiple-criteria decision-making, Complex Intell. Syst., 7 (2021), 2711–2734. https://doi.org/10.1007/s40747-021-00446-2 doi: 10.1007/s40747-021-00446-2
    [15] M. Naeem, J. Ali, A novel multi-criteria group decision-making method based on Aczel-Alsina spherical fuzzy aggregation operators: Application to evaluation of solar energy cells, Phys. Scripta, 97 (2022), 085203. https://doi.org/10.1088/1402-4896/ac7980 doi: 10.1088/1402-4896/ac7980
    [16] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning–-I, Inform. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [17] F. Herrera, L. Martínez, An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertain. Fuzz., 8 (2000), 539–562. https://doi.org/10.1142/S0218488500000381 doi: 10.1142/S0218488500000381
    [18] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE T. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [19] Z. Zhang, J. Gao, Y. Gao, W. Yu, Two-sided matching decision making with multi-granular hesitant fuzzy linguistic term sets and incomplete criteria weight information, Expert Syst. Appl., 168 (2021), 114311. https://doi.org/10.1016/j.eswa.2020.114311 doi: 10.1016/j.eswa.2020.114311
    [20] M. Zhao, G. Wei, J. Wu, Y. Guo, C. Wei, TODIM method for multiple attribute group decision making based on cumulative prospect theory with 2-tuple linguistic neutrosophic sets, Int. J. Intell. Syst., 36 (2021), 1199–1222. https://doi.org/10.1002/int.22338 doi: 10.1002/int.22338
    [21] S. Naz, M. Akram, M. M. A. Al-Shamiri, M. R. Saeed, Evaluation of network security service provider using 2-tuple linguistic complex-rung orthopair fuzzy COPRAS method, Complexity, 2022 (2022), 4523287. https://doi.org/10.1155/2022/4523287 doi: 10.1155/2022/4523287
    [22] J. Chai, S. Xian, S. Lu, Z-uncertain probabilistic linguistic variables and its application in emergency decision making for treatment of COVID-19 patients, Int. J. Intell. Syst., 36 (2021), 362–402. https://doi.org/10.1002/int.22303 doi: 10.1002/int.22303
    [23] A. Saha, T. Senapati, R. R. Yager, Hybridizations of generalized Dombi operators and Bonferroni mean operators under dual probabilistic linguistic environment for group decision-making, Int. J. Intell. Syst., 36 (2021), 6645–6679. https://doi.org/10.1002/int.22563 doi: 10.1002/int.22563
    [24] J. Ali, Z. Bashir, T. Rashid, A multi-criteria group decision-making approach based on revised distance measures under dual hesitant fuzzy setting with unknown weight information, Soft Comput., 26 (2022), 8387–8401. https://doi.org/10.1007/s00500-022-07208-3 doi: 10.1007/s00500-022-07208-3
    [25] M. Akram, S. Naz, F. Ziaa, Novel decision-making framework based on complex q-rung orthopair fuzzy information, Sci. Iran., 2021. https://doi.org/10.24200/SCI.2021.55413.4209
    [26] M. Akram, S. Naz, S. A. Edalatpanah, R. Mehreen, Group decision-making framework under linguistic q-rung orthopair fuzzy Einstein models, Soft Comput., 25 (2021), 10309–10334. https://doi.org/10.1007/s00500-021-05771-9 doi: 10.1007/s00500-021-05771-9
    [27] S. Naz, M. Akram, Novel decision-making approach based on hesitant fuzzy sets and graph theory, Comput. Appl. Math., 38 (2019), 7. https://doi.org/10.1007/s40314-019-0773-0 doi: 10.1007/s40314-019-0773-0
    [28] S. Naz, M. Akram, S. Alsulami, F. Ziaa, Decision-making analysis under interval-valued $q$-rung orthopair dual hesitant fuzzy environment, Int. J. Comput. Int. Sys., 14 (2021), 332–357. https://doi.org/10.2991/ijcis.d.201204.001 doi: 10.2991/ijcis.d.201204.001
    [29] S. Naz, M. Akram, M. A. Al-Shamiri, M. M. Khalaf, G. Yousaf, A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators, Math. Biosci. Eng., 19 (2022), 3843–3878. https://doi.org/10.3934/mbe.2022177 doi: 10.3934/mbe.2022177
    [30] S. Naz, M. Akram, A. B. Saeid, A. Saadat, Models for MAGDM with dual hesitant q-rung orthopair fuzzy 2-tuple linguistic MSM operators and their application to COVID-19 pandemic, Expert Syst., 39 (2022), e13005. https://doi.org/10.1111/exsy.13005 doi: 10.1111/exsy.13005
    [31] S. Naz, M. Akram, G. Muhiuddin, A. Shafiq, Modified EDAS method for MAGDM based on MSM operators with 2-tuple linguistic-spherical fuzzy sets, Math. Probl. Eng., 2022 (2022), 5075998. https://doi.org/10.1155/2022/5075998 doi: 10.1155/2022/5075998
    [32] H. Garg, S. Naz, F. Ziaa, Z. Shoukat, A ranking method based on Muirhead mean operator for group decision making with complex interval-valued q-rung orthopair fuzzy numbers, Soft Comput., 25 (2021), 14001–14027. https://doi.org/10.1007/s00500-021-06231-0 doi: 10.1007/s00500-021-06231-0
    [33] P. Liu, S. Naz, M. Akram, M. Muzammal, Group decision-making analysis based on linguistic q-rung orthopair fuzzy generalized point weighted aggregation operators, Int. J. Mach. Learn. Cyb., 13 (2022), 883–906. https://doi.org/10.1007/s13042-021-01425-2 doi: 10.1007/s13042-021-01425-2
    [34] L. Fei, Y. Deng, Multi-criteria decision making in Pythagorean fuzzy environment, Appl. Intell., 50 (2020), 537–561. https://doi.org/10.1007/s10489-019-01532-2 doi: 10.1007/s10489-019-01532-2
    [35] N. Waseem, M. Akram, J. C. R. Alcantud, Multi-attribute decision-making based on $m$-polar fuzzy Hamacher aggregation operators, Symmetry, 11 (2019), 1498. https://doi.org/10.3390/sym11121498 doi: 10.3390/sym11121498
    [36] H. Garg, R. Arora, Generalized Maclaurin symmetric mean aggregation operators based on Archimedean t-norm of the intuitionistic fuzzy soft set information, Artif. Intell. Rev., 54 (2021), 3173–3213. https://doi.org/10.1007/s10462-020-09925-3 doi: 10.1007/s10462-020-09925-3
    [37] X. Peng, X. Zhang, Z. Luo, Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation, Artif. Intell. Rev., 53 (2020), 3813–3847. https://doi.org/10.1007/s10462-019-09780-x doi: 10.1007/s10462-019-09780-x
    [38] H. Hamacher, Über logische Verknünpfungenn unssharfer Aussagen und deren zugenhörige Bewertungs-funktione, Prog. Cybern. Syst. Res., 3 (1978), 276–288.
    [39] G. Wei, M. Lu, X. Tang, Y. Wei, Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 1197–1233. https://doi.org/10.1002/int.21978 doi: 10.1002/int.21978
    [40] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE T. Fuzzy Syst., 12 (2004), 45–61. https://doi.org/10.1109/TFUZZ.2003.822678 doi: 10.1109/TFUZZ.2003.822678
    [41] M. Akram, X. Peng, A. Sattar, A new decision-making model using complex intuitionistic fuzzy Hamacher aggregation operators, Soft Comput., 25 (2021), 7059–7086. https://doi.org/10.1007/s00500-021-05658-9 doi: 10.1007/s00500-021-05658-9
    [42] D. Pamucar, M. Deveci, I. Gokasar, M. Popovic, Fuzzy Hamacher WASPAS decision-making model for advantage prioritization of sustainable supply chain of electric ferry implementation in public transportation, Environ. Dev. Sustain., 24 (2022), 7138–7177. https://doi.org/10.1007/s10668-021-01742-0 doi: 10.1007/s10668-021-01742-0
    [43] S. Faizi, W. Sałabun, S. Nawaz, A. ur Rehman, J. Watróbski, Best-Worst method and Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets, Expert Syst. Appl., 181 (2021), 115088. https://doi.org/10.1016/j.eswa.2021.115088 doi: 10.1016/j.eswa.2021.115088
    [44] H. Garg, Z. Ali, T. Mahmood, Interval-valued picture uncertain linguistic generalized Hamacher aggregation operators and their application in multiple attribute decision-making process, Arab. J. Sci. Eng., 46 (2021), 10153–10170. https://doi.org/10.1007/s13369-020-05313-9 doi: 10.1007/s13369-020-05313-9
    [45] A. Hadi, W. Khan, A. Khan, A novel approach to MADM problems using Fermatean fuzzy Hamacher aggregation operators, Int. J. Intell. Syst., 36 (2021), 3464–3499. https://doi.org/10.1002/int.22423 doi: 10.1002/int.22423
    [46] M. K. Ghorabaee, E. K. Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making, Econ. Comput. Econ. Cyb., 50 (2016), 25–44.
    [47] F. Lei, G. Wei, X. Chen, Model-based evaluation for online shopping platform with probabilistic double hierarchy linguistic CODAS method, Int. J. Intell. Syst., 36 (2021), 5339–5358. https://doi.org/10.1002/int.22514 doi: 10.1002/int.22514
    [48] V. Simic, S. Karagoz, M. Deveci, N. Aydin, Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location, Expert Syst. Appl., 175 (2021), 114644. https://doi.org/10.1016/j.eswa.2021.114644 doi: 10.1016/j.eswa.2021.114644
    [49] Q. Wang, Research on teaching quality evaluation of college english based on the CODAS method under interval-valued intuitionistic fuzzy information, J. Intell. Fuzzy Syst., 41 (2021), 1499–1508. https://doi.org/10.3233/JIFS-210366 doi: 10.3233/JIFS-210366
    [50] S. Naz, M. Akram, A. Sattar, M. M. A. Al-Shamiri, 2-tuple linguistic q-rung orthopair fuzzy CODAS approach and its application in arc welding robot selection, AIMS Mathematics, 7 (2022), 17529–17569. https://doi.org/10.3934/math.2022966 doi: 10.3934/math.2022966
    [51] M. Akram, Z. Niaz, F. Feng, Extended CODAS method for multi-attribute group decision-making based on 2-tuple linguistic Fermatean fuzzy Hamacher aggregation operators, Granular Comput., 2022. https://doi.org/10.1007/s41066-022-00332-3
    [52] F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: Steps for solving decision problems under linguistic information, Fuzzy Set. Syst., 115 (2000), 67–82. https://doi.org/10.1016/S0165-0114(99)00024-X doi: 10.1016/S0165-0114(99)00024-X
    [53] W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
    [54] M. Akram, S. Naz, F. Feng, A. Shafiq, Assessment of hydropower plants in Pakistan: Muirhead mean-based 2-tuple linguistic t-spherical fuzzy model combining SWARA with COPRAS, Arab. J. Sci. Eng., 2022. https://doi.org/10.1007/s13369-022-07081-0
    [55] P. Wang, J. Wang, G. Wei, EDAS method for multiple criteria group decision making under 2-tuple linguistic neutrosophic environment, J. Intell. Fuzzy Syst., 37 (2019), 1597–1608. https://doi.org/10.3233/JIFS-179223 doi: 10.3233/JIFS-179223
    [56] P. Wang, J. Wang, G. Wei, J. Wu, C. Wei, Y. Wei, CODAS method for multiple attribute group decision making under 2-tuple linguistic neutrosophic environment, Informatica, 31 (2020), 161–184. https://doi.org/10.1007/s13042-020-01208-1 doi: 10.1007/s13042-020-01208-1
    [57] T. He, S. Zhang, G. Wei, R. Wang, J. Wu, C. Wei, CODAS method for 2-tuple linguistic Pythagorean fuzzy multiple attribute group decision making and its application to financial management performance assessment, Technol. Econ. Dev. Eco., 26 (2020), 920–932. https://doi.org/10.3846/tede.2020.11970 doi: 10.3846/tede.2020.11970
    [58] P. Cheng, B. Zhou, Z. Chen, J. Tan, The TOPSIS method for decision making with 2-tuple linguistic intuitionistic fuzzy sets, IAEAC, 2017, 1603–1607. https://doi.org/10.1109/IAEAC.2017.8054284
    [59] I. Petrovic, M. Kankaras, A hybridized IT2FS-DEMATEL-AHP-TOPSIS multicriteria decision making approach: Case study of selection and evaluation of criteria for determination of air traffic control radar position, Decis. Mak. Appl. Manage. Eng., 3 (2020), 146–164. https://doi.org/10.31181/dmame2003134p doi: 10.31181/dmame2003134p
    [60] G. Ali, M. Afzal, M. Asif, A. Shazad, Attribute reduction approaches under interval-valued q-rung orthopair fuzzy soft framework, Appl. Intell., 52 (2022), 8975–9000. https://doi.org/10.1007/s10489-021-02853-x doi: 10.1007/s10489-021-02853-x
    [61] X. Mi, Y. Tian, B. Kang, A hybrid multi-criteria decision making approach for assessing health-care waste management technologies based on soft likelihood function and D-numbers, Appl. Intell., 51 (2021), 6708–6727. https://doi.org/10.1007/s10489-020-02148-7 doi: 10.1007/s10489-020-02148-7
    [62] M. Akram, A. Martino, Multi-attribute group decision making based on $T$-spherical fuzzy soft rough average aggregation operators, Granular Comput., 2022. https://doi.org/10.1007/s41066-022-00319-0
    [63] M. Akram, N. Ramzan, F. Feng. Extending COPRAS method with linguistic fermatean fuzzy sets and Hamy mean operators, J. Math., 2022, 8239263. https://doi.org/10.1155/2022/8239263
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1666) PDF downloads(81) Cited by(22)

Article outline

Figures and Tables

Figures(7)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog